Совместный пиролиз нефтешлама и добавок: аналитический обзор
Просмотры: 633 / Загрузок PDF: 154
DOI:
https://doi.org/10.32523/2616-6771-2025-151-2-11-34Ключевые слова:
нефтешлам, добавки, отходы, пиролиз, нефть, газ, твердый остатокАннотация
Являясь побочным продуктом нефтяной промышленности, нефтешлам создал серьезную проблему, так как содержит большое количество загрязняющих веществ и поэтому представляет существенную угрозу для экологичной безопасности окружающей среды и здоровья человека. С другой стороны, большую часть нефтешлама составляет сырая нефть, которая имеет большую ценность для переработки. Поэтому выбор метода обработки и утилизации нефтешлама играет первостепенное значение и среди существующих многих методов пиролиз выделяется разумным распределением продукции и меньшим выбросом загрязняющих веществ. В этой обзорной статье представлены последние достижения в области совместного пиролиза нефтешлама с различными видами сырья/отходов (сельскохозяйственная биомасса, древесные и резиновые отходы, пластик и др.) с получением таких ценных продуктов как нефть и газ, а также твердый остаток, который можно использовать при получении адсорбентов, полукокса, катализаторов, агентов для рекультивации почвы и др. Описаны основные достоинства совместного пиролиза нефтешлама с добавками и их влияние на эффективность процесса сопиролиза.Проведен анализ влияния различных добавок (микроводоросли, рисовая шелуха, древесные опилки, летучая зола и др.)на выход продуктов совместного пиролиза в зависимости от различных химико-технологических условий проведения сопиролиза (температура и время процесса, тип реактора, массовое соотношение нефтешлам/добавка и др.).
Скачивания
Библиографические ссылки
Abnisa, F., Wan Daud, W.M.A. (2014). A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Convers Manag 87, 71-85. https://doi.org/10.1016/j.enconman.2014.07.007
Ahmed, A., Muhammad, S., Rahayu, S., Hussain, M., Abid, F., Surendar, M., Young-Kwon, P. (2020). Sawdust pyrolysis from the furniture industry in an auger pyrolysis reactor system for biochar and bio-oil production. Energy Convers Manag 226, 113502. https://doi.org/10.1016/j.enconman.2020.113502
Aimin, S.C. (2015). High Quality Oil Recovery from Oil Sludge Employing a Pyrolysis Process with Oil Sludge Ash Catalyst. Int J Waste Resour. 05(02). https://doi.org/10.4172/2252-5211.1000176
Akhtar, J., Saidina, A.N. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew. Sustain Energy Rev 16(7), 5101-5109. https://doi.org/10.1016/j.rser.2012.05.033
Al-Zahrani, S.M., Putra, M.D. (2013). Used lubricating oil regeneration by various solvent extraction techniques. J Ind Eng Chem 19(2), 536-539. https://doi.org/10.1016/j.jiec.2012.09.007
Assumpção, F.N., Carbonell, L.C., Marques, M.M. (2011). Co-pyrolysis of polypropylene waste with Brazilian heavy oil. J. Environ. Sci Heal Part A 46(5), 461-464. https://doi.org/10.1080/10934529.2011.551724
Bowles, A.J., Nievas, Á., Fowler, G.D. (2023). Consecutive recovery of recovered carbon black and limonene from waste tyres by thermal pyrolysis in a rotary kiln. Sustain Chem Pharm 32, 100972. https://doi.org/10.1016/j.scp.2023.100972
Bridgwater, A.V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 38, 68-94. https://doi.org/10.1016/J.BIOMBIOE.2011.01.048
Chang, C.-Y., Shie, J.-L., Lin, J.-P., Wu, C.-H., Lee, D.-J., Chang, C.-F. (2000). Major Products Obtained from the Pyrolysis of Oil Sludge. Energy & Fuels 14(6), 1176-1183. https://doi.org/10.1021/ef0000532
Chang, C.Y., Shie, J.L., Lin, J.P., Wu, C.H., Lee, D.J., Chang, C.F. (2000). Major products obtained from the pyrolysis of oil sludge. Energy Fuel 14, 1176-1183. https://doi.org/10.1021/ef0000532
Cao, J., Liaw, S.B., Long, Y., Yu, Y., Wu, H. (2020). Formation of reaction intermediates and primary volatiles during acid-catalysed fast pyrolysis of cellulose in a wire-mesh reactor. P Combust Inst 38, 4301-4308. https://doi.org/10.1016/j.proci.2020.07.035
Chen, L., Zhang, X.D., Sun, L.Z., Xu, H.J., Si, H.Y., Mei, N. (2016). Study on the fast pyrolysis of oil sludge and its product distribution by PY-GC/MS. Energy Fuel 30, 10222-10227. https://doi.org/10.1021/acs.energyfuels.6b01991
Chen, G., Li, J., Li, K., Lin, F., Tian, W., Che, L., Yan, B., Ma, W., Song, Y. (2020). Nitrogen, sulfur, chlorine containing pollutants releasing characteristics during pyrolysis and combustion of oily sludge. Fuel 273, 117772. https://doi.org/10.1016/j.fuel.2020.117772
Chen, Y., Zhang, L., Zhang, Y., Li, A. (2019). Pressurized pyrolysis of sewage sludge: Process performance and products characterization. J Anal Appl Pyrolysis 139, 205-212. https://doi.org/10.1016/j.jaap.2019.02.007
Chen, W., Chen, Y., Yang, H., Xia, M., Li, K., Chen, X., Chen, H. (2017). Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect. Bioresour Technol 245, 860-868. https://doi.org/10.1016/j.biortech.2017.09.022
Chen, Z., Yu, G., Wang, Y., Liu, X., Wang, X. (2019). Research on synergistically hydrothermal treatment of municipal solid waste incineration fly ash and sewage sludge. Waste Manag 100, 182-190. https://doi.org/10.1016/j.wasman.2019.09.006
Chen, C., Ling, H., Qiu, S., Huang, X., Fan, D., Zhao, J. (2022). Microwave catalytic co-pyrolysis of Chlorella vulgaris and oily sludge: Characteristics and bio-oil analysis. Bioresour Technol 360, 127550. https://doi.org/10.1016/j.biortech.2022.127550
Chen, Y.R. (2016). Microwave pyrolysis of oily sludge with activated carbon. Environ Technol (United Kingdom) 37(24), 3139-3145. https://doi.org/10.1080/09593330.2016.1178333
Cheng, S., Takahashi, F., Gao, N., Yoshikawa, K., Li, A. (2016). Evaluation of Oil Sludge Ash as a Solid Heat Carrier in the Pyrolysis Process of Oil Sludge for Oil Production. Energy & Fuels 30(7), 5970-5979. https://doi.org/10.1021/acs.energyfuels.6b00648
Cheng, S., Wang, Y., Fumitake, T., Kouji, T., Li, A., Kunio, Y. (2017). Effect of steam and oil sludge ash additive on the products of oil sludge pyrolysis. Appl Energy 185, 146-157. https://doi.org/10.1016/j.apenergy.2016.10.055
Cheng, S., Wang, Y.H., Fumitake, T., Kouji, T., Li, A.M., Kunio, Y. (2017). Effect of steam and oil sludge ash additive on the products of oil sludge pyrolysis. Appl Energy 185, 146-157. https://doi.org/10.1016/j.apenergy.2016.10.055
Chiang, W.-F., Fang, H.-Y., Wu, C.-H., Chang, C.-Y., Chang, Y.-M., Shie, J.-L. (2008). Pyrolysis Kinetics of Rice Husk in Different Oxygen Concentrations. J Environ Eng 134(4), 316-325. https://doi.org/10.1061/(ASCE)0733-9372(2008)134:4(316)
Di, X., Pan, H., Li, D., Hu, H., Hu, Z., Yan, Y. (2021). Thermochemical Recycling of Oily Sludge by Catalytic Pyrolysis: A Review. Scanning, 1131858. https://doi.org/10.1155/2021/1131858
Doja, S., Pillari, L.K., Bichler, L. (2022). Processing and activation of tire-derived char: A review. Renew Sustain Energy Rev 155, 111860. https://doi.org/10.1016/j.rser.2021.111860
Du, M., Li, J., Wang, F., Li, X., Yu, T., Qu, C. (2021). The sludge-based adsorbent from oily sludge and sawdust: preparation and optimization. Environ Technol 42(20), 3164-3177. https://doi.org/10.1080/09593330.2020.1725138
Ermagambet, B.T., Kasenov, B.K., Nurgaliyev, N.U., Kazankapova, M.K., Kasenova, Z.M., Zikirina, A.M. (2018). Adsorbent Production Using Oil Shale from the Kendyrlyk Deposit. Solid Fuel Chem 52(5), 302-307. https://doi.org/10.3103/S036152191805004X
Ermagambet, B.T., Nurgaliyev, N.U., Kazankapova, M.K., Kasenova, Z.M., Abylgazina, L.D. (2019). Smokeless fuel production – semi-coke from coal. NEWS Natl Acad Sci Repub Kazakhstan 2(434), 144-149. https://doi.org/10.32014/2019.2518-170X.48
Prashanth, F.P., Shravani, B., Vinu, R., Lavanya, M., Prabu, R.V. (2021). Production of diesel range hydrocarbons from crude oil sludge via microwave-assisted pyrolysis and catalytic upgradation. Process Saf Environ Prot 146, 383-395. https://doi.org/10.1016/j.psep.2020.08.025
Fu, Y., Que, Z., Shi, J., Ai, X., Zou, W. (2022). Thermal behavior and gas products of cold rolling oily sludge by TG-MS and Py-EGA/MS. Energy Reports 8, 763-773. https://doi.org/10.1016/j.egyr.2022.02.012
Gao, N., Duan, Y., Li, Z., Quan, C., Yoshikawa, K. (2021). Hydrothermal treatment combined with in-situ mechanical compression for floated oily sludge dewatering. J Hazard Mater 402, 124173. https://doi.org/10.1016/j.jhazmat.2020.124173
Gao, N., Li, J., Quan, C., Tan, H. (2020). Product property and environmental risk assessment of heavy metals during pyrolysis of oily sludge with fly ash additive. Fuel 266, 117090. https://doi.org/10.1016/j.fuel.2020.117090
Gao, N., Kamran, K., Ma, Z., Quan, C. (2021). Investigation of product distribution from co-pyrolysis of side wall waste tire and off-shore oil sludge. Fuel 285, 119036. https://doi.org/10.1016/j.fuel.2020.119036
Gong, Z., Wang, Z., Wang, Z., Fang, P., Meng, F. (2019). Study on the migration characteristics of nitrogen and sulfur during co-combustion of oil sludge char and microalgae residue. Fuel 238, 1-9. https://doi.org/10.1016/j.fuel.2018.10.087
Gong, Z., Liu, C., Wang, M., Wang, Z., Li, X. (2020). Experimental study on catalytic pyrolysis of oil sludge under mild temperature. Sci Total Environ 708, 135039. https://doi.org/10.1016/j.scitotenv.2019.135039
Gong, Z.Q., Du, A.X., Wang, Z.B., Fang, P.W., Li, X.Y. (2017). Experimental study on pyrolysis characteristics of oil sludge with a tube furnace reactor. Energy Fuel 31, 8102-8108. https://doi.org/10.1021/acs.energyfuels.7b01363
Guillain, M., Fairouz, K., Mar, S.R., Monique, F., Jacques, L. (2009). Attrition-free pyrolysis to produce bio-oil and char. Bioresour Technol 100(23), 6069-6075. https://doi.org/10.1016/j.biortech.2009.06.085
Haghanimanesh, M., Baniasadi, E., Kerdabadi, K.J., Yu, X. (2022). Exergoeconomic analysis of a novel trigeneration cycle based on steel slag heat recovery and biogas production in steelmaking plants. Energy Convers Manag 263, 115688. https://doi.org/10.1016/j.enconman.2022.115688
Hamilton, J., Seyedmahmoudian, M., Jamei, E., Horan, B., Tojcevski, A. (2020). A systematic review of solar driven waste to fuel pyrolysis technology for the Australian state of Victoria. Energy Reports 6, 3212-3229. https://doi.org/10.1016/j.egyr.2020.11.039
Han, L., Li, J., Qu, C., Shao, Z., Yu, T., Yang, B. (2022). Recent Progress in Sludge Co-Pyrolysis Technology. Sustain 14(13), 1-12. https://doi.org/10.3390/su14137574
Hasan, A.M.A., Kamal, R.S., Farag, R.K., Abdel-raouf, M.E. (2024). Petroleum sludge formation and its treatment methodologies: a review. Environ Sci Pollut Res 31(6), 8369-8386. https://doi.org/10.1007/s11356-023-31674-3
Ho, C.C., Show, M.C., Ong, S.H. (1992). Recovery of residual oil from the centrifuge sludge of a palm oil mill: Effect of enzyme digestion and surfactant treatment. J Am Oil Chem Soc 69(3), 276-282. https://doi.org/10.1007/BF02635901
Hu, G., Li, J., Zeng, G. (2013). Recent development in the treatment of oily sludge from petroleum industry: A review J Hazard Mater 261, 470-490. https://doi.org/10.1016/j.jhazmat.2013.07.069
Hu, G., Li, J., Hou, H. (2015). A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge. J Hazard Mater 283, 832-840. https://doi.org/10.1016/j.jhazmat.2014.10.028
Hu, G., Li, J., Zhang, X., Li, Y. (2017). Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology. J Environ Manage 192, 234-242. https://doi.org/10.1016/j.jenvman.2017.01.069
Hui, K., Tang, J., Lu, H., Xi, B., Qu, C., Li, J. (2020). Status and prospect of oil recovery from oily sludge: A review. Arab J Chem 13(8), 6523-6543. https://doi.org/10.1016/j.arabjc.2020.06.009
Jeon, M.J., Jeon, J.-K., Suh, D.J., Park, S.H., Sa, Y.J., Joo, S.H., Park, Y.-K. (2013). Catalytic pyrolysis of biomass components over mesoporous catalysts using Py-GC/MS. Catal Today 204, 170-178. https://doi.org/10.1016/J.CATTOD.2012.07.039
Johnson, O.A., Affam, A.C. (2019). Petroleum sludge treatment and disposal: A review. Environ Eng Res 24(2), 191-201. https://doi.org/10.4491/EER.2018.134
Jones, I., Zhu, M., Zhang, J., Zhang, Z., Preciado-Hernandez, J., Gao, J., Zhang, D. (2021). The application of spent tyre activated carbons as low-cost environmental pollution adsorbents: A technical review. J Clean Prod 312, 127566. https://doi.org/10.1016/j.jclepro.2021.127566
Ju, Y., Zhu, Y., Zhou, H., Ge, S., Xie, H. (2021). Microwave pyrolysis and its applications to the in situ recovery and conversion of oil from tar-rich coal: An overview on fundamentals, methods, and challenges. Energy Reports 7, 523-536. https://doi.org/10.1016/j.egyr.2021.01.021
Kasenova, Z.М., Yermagambet, B.T., Nurgaliyev, N.U., Kazankapova, М.K. (2018). Investigation of the Thermal Decomposition Process of Kendyrlik Deposit Oil Shales. News Natl Acad Sci Repub Kazakhstan Ser Geol Tech Sci 3(429), 189-196.
Kim, J.H., Oh, J.I., Baek, K., Park, Y.K., Zhang, M., Lee, J., Kwon, E.E. (2019). Thermolysis of crude oil sludge using CO2 as reactive gas medium. Energy Convers Manag 186, 393-400. https://doi.org/10.1016/j.enconman.2019.02.070
Kuśmierek, K., Świątkowski, A., Kotkowski, T., Cherbański, R., Molga, E. (2021). Adsorption on activated carbons from end-of-life tyre pyrolysis for environmental applications. Part I. preparation of adsorbent and adsorption from gas phase. J Anal Appl Pyrolysis 157, 105205. https://doi.org/10.1016/j.jaap.2021.105205
Kuśmierek, K., Świątkowski, A., Kotkowski, T., Cherbański, R., Molga, E. (2021). Adsorption on activated carbons from end-of-life tyre pyrolysis for environmental applications. Part II. Adsorption from aqueous phase. J Anal Appl Pyrolysis 158, 105206. https://doi.org/10.1016/j.jaap.2021.105206
Kwon, E.E., Kim, S., Lee, J. (2019). Pyrolysis of waste feedstocks in CO2 for effective energy recovery and waste treatment. J CO2 Util 31, 173-180. https://doi.org/10.1016/j.jcou.2019.03.015
Li, F.Z., Zhang, Y.P., Wang, S., Li, G.B., Yue, X.P., Zhong, D.X., Chen, C.H., Shen, K. (2020). Insight into ex-situ thermal desorption of soils contaminated with petroleum via carbon number-based fraction approach. Chem Eng J 385, 123946. https://doi.org/10.1016/j.cej.2019.123946
Li, J., Lin, F., Xiang, L., Zheng, F., Che, L., Tian, W., Guo, X., Yan, B., Song, Y., Chen, G. (2021). Hazardous elements flow during pyrolysis of oily sludge. J Hazard Mater 409, 124986. https://doi.org/10.1016/j.jhazmat.2020.124986
da Silva, L.J., Alves, F. C., de França, F. P. (2012). A review of the technological solutions for the treatment of oily sludges from petroleum refineries. Waste Manag Res J a Sustain Circ Econ 30(10), 1016-1030. https://doi.org/10.1177/0734242X12448517
Li, J., Lin, F., Li, K., Zheng, F., Yan, B., Che, L., Tian, W., Chen, G., Yoshikawa, K. (2021). A critical review on energy recovery and non-hazardous disposal of oily sludge from petroleum industry by pyrolysis. J Hazard Mater 406, 124706. https://doi.org/10.1016/j.jhazmat.2020.124706
Li, Q., Gao, Y., Ji, G., Chen, C., Li, A. (2020). Evaluation of pyrolysis residue of oil sludge for recycling as bed material. Can J Chem Eng 98(2), 465-474. https://doi.org/10.1002/cjce.23618
Li, X.Y., Yang, X.X., Cheng, G., Feng, H.Q., Liu, X.J., Ma, Y.F. (2011). Experimental Study on Co-Pyrolysis of Oil Sludge and Coal. Adv Mater Res 356–360, 2515-2519. https://doi.org/10.4028/www.scientific.net/AMR.356-360.2515
Li, T., Su, T., Wang, J., Zhu, S., Zhang, Y., Geng, Z., Wang, X., Gao, Y. (2023). Simultaneous removal of sulfate and nitrate from real high-salt flue gas wastewater concentrate via a waste heat crystallization route. J Clean Prod 382, 135262. https://doi.org/10.1016/j.jclepro.2022.135262
Lin, B., Wang, J., Huang, Q., Ali, M., Chi, Y. (2017). Aromatic recovery from distillate oil of oily sludge through catalytic pyrolysis over Zn modified HZSM-5 zeolites. J Anal Appl Pyrolysis 128, 291-303. https://doi.org/10.1016/j.jaap.2017.09.021
Lin, B., Huang, Q., Chi, Y. (2018). Co-pyrolysis of oily sludge and rice husk for improving pyrolysis oil quality. Fuel Process Technol 177, 275-282. https://doi.org/10.1016/j.fuproc.2018.05.002
Lin, B.C., Huang, Q.X., Ali, M., Wang, F., Chi, Y., Yan, J.H. (2019). Continuous catalytic pyrolysis of oily sludge using U-shape reactor for producing saturates-enriched light oil. P Combust Inst 37(3), 3101-3108. https://www.sciencedirect.com/science/article/abs/pii/S1540748918301494?via%3Dihub
Lin, F., Zheng, F., Li, J., Sun, B., Che, L., Yan, B., Chen, G. (2022). Catalytic pyrolysis of oily sludge with iron-containing waste for production of high-quality oil and H2-rich gas. Fuel 326, 124995. https://doi.org/10.1016/j.fuel.2022.124995
Liu, Y., Yu, H., Jiang, Z., Song, Y., Zhang, T., Siyal, A.A., Dai, J., Biab, X., Fua, J., Ao, W., Zhou, C., Wang, L., Li, X., Jin, X., Teng, D., Fang, J. (2021). Microwave pyrolysis of oily sludge under different control modes. J Hazard Mater 416, 125887. https://doi.org/10.1016/j.jhazmat.2021.125887
Liu, X., Yao, T., Lai, R., Xiu, J., Huang, L., Sun, S. (2019). Recovery of crude oil from oily sludge in an oilfield by sophorolipid. Pet Sci Technol 37(13), 1582-1588. https://doi.org/10.1080/10916466.2019.1594286
Liu, J., Yu, Y., Zhu, S., Yang, J., Song, J., Fan, W., Yu, H., Bian, D., Huo, M. (2018). Synthesis and characterization of a magnetic adsorbent from negatively-valued iron mud for methylene blue adsorption. PLoS One 13(2), e0191229. https://doi.org/10.1371/journal.pone.0191229
Liu, Y., Liu, Y., Khan, A., Wang, Z., Chen, Y., Zhu, S., Sun, T., Lian, D., Yu, H. (2020). Upcycling of Electroplating Sludge to Prepare Erdite-Bearing Nanorods for the Adsorption of Heavy Metals from Electroplating Wastewater Effluent. Water 12(4), 1027. https://doi.org/10.3390/w12041027
Lee, S.-R., Lee, J., Lee, T., Tsang, Y.F., Jeong, K.-H., Oh, J.-I., Kwon, E.E. (2017). Strategic use of CO2 for co-pyrolysis of swine manure and coal for energy recovery and waste disposal. J CO2 Util 22, 110-116. https://doi.org/10.1016/j.jcou.2017.09.018
Lee, T., Nam, I.H., Kim, J.H., Zhang, M., Jeong, T.Y., Baek, K., Kwon, E.E. (2018). The enhanced thermolysis of heavy oil contaminated soil using CO2 for soil remediation and energy recovery. J CO2 Util 28, 367-373. https://doi.org/10.1016/j.jcou.2018.10.017
Al-Doury, M.M.I. (2019). Treatment of oily sludge using solvent extraction. Petroleum Science and Technology 37(2), 190-196. https://doi.org/10.1080/10916466.2018.1533859
Mettler, M.S., Vlachos, D.G., Dauenhauer, P.J. (2012). Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy & Environmental Science 5, 7797-7809. https://doi.org/10.1039/C2EE21679E
Ma, M., Xu, D., Zhi, Y., Yang, W., Duan, P., Wu, Z. (2022). Co-pyrolysis re-use of sludge and biomass waste: Development, kinetics, synergistic mechanism and industrialization. Journal of Analytical and Applied Pyrolysis 168, 105746. https://doi.org/10.1016/j.jaap.2022.105746
Adhikari, S. M., Shakya, R., Wang, K., Dayton, D., Lehrich, M., Steven, E. T. (2016). Effect of Alkali and Alkaline Earth Metals on in-Situ Catalytic Fast Pyrolysis of Lignocellulosic Biomass: A Microreactor Study. Energy & Fuels 30(4), 3045-3056. https://doi.org/10.1021/acs.energyfuels.5b02984
Ma, W.C., Rajput, G., Pan, M.H., Lin, F.W., Zhong, L., Chen, G.Y. (2019). Pyrolysis of typical MSW components by Py-GC/MS and TG-FTIR. Fuel. 251, 693-708. https://doi.org/10.1016/j.fuel.2019.04.069
Martínez, J.D., Puy, N., Murillo, R., García, T., Navarro, M.V., Mastral, A.M. (2013). Waste tyre pyrolysis – A review. Renewable and Sustainable Energy Reviews 23, 179-213. https://doi.org/10.1016/j.rser.2013.02.038
Mettler, M.S., Vlachos, D.G., Dauenhauer, P.J. (2012). Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy & Environmental Science 5, 7797-7809. https://doi.org/10.1039/C2EE21679E
Milato, J.V., França, R.J., Rocha, A.S., M.R., Calderari, C.M. (2020). Catalytic co-pyrolysis of oil sludge with HDPE to obtain paraffinic products over HUSY zeolites prepared by dealumination and desilication. Journal of Analytical and Applied Pyrolysis 151, 104928. https://doi.org/10.1016/j.jaap.2020.104928
Miskolczi, N. (2013). Co-pyrolysis of petroleum based waste HDPE, poly-lactic-acid biopolymer and organic waste. Journal of Industrial and Engineering Chemistry 19(5), 1549-1559. https://doi.org/10.1016/j.jiec.2013.01.022
Nie, F., Li, Y., Tong, K., Wu, B., Zhang, M., Ren, W., Xie, S., Li, X. (2020). Volatile evolution during thermal treatment of oily sludge from a petroleum refinery wastewater treatment Plant: TGA-MS, Py-GC(EGA)/MS and kinetics study. Fuel 278, 118332. https://doi.org/10.1016/j.fuel.2020.118332
Niu, A., Sun, X., Lin,C. (2022). Trend in Research on Characterization, Environmental Impacts and Treatment of Oily Sludge: A Systematic Review. Molecules 27(22), 1-24. https://doi.org/10.3390/molecules27227795
Önenç, S., Brebu, M., Vasile, C., Yanik, J. (2012). Copyrolysis of scrap tires with oily wastes. Journal of Analytical and Applied Pyrolysis 94, 184-189. https://doi.org/10.1016/j.jaap.2011.12.0
Park, S., Jae, J., Farooq, A., Eilhann, E.K., Park, E.D., Ha, J.-M., Jung, S.-C. Park, Y.-K. (2019). Continuous pyrolysis of organosolv lignin and application of biochar on gasification of high density polyethylene. Applied Energy 255, 113801. https://doi.org/10.1016/j.apenergy.2019.113801
Qu, Y., Li, A.M., Wang, D., Zhang, L., Ji, G.Z. (2019). Kinetic study of the effect of in--situ mineral solids on pyrolysis process of oil sludge. Chemical Engineering Journal 374, 338-346. https://doi.org/ 10.1016/j.cej.2019.05.183
Qu, Z., Dong, G., Zhu, S., Yu, Y., Huo, M., Xu, K., Liu, M. (2020). Recycling of groundwater treatment sludge to prepare nano-rod erdite particles for tetracycline adsorption. Journal of Cleaner Production. Journal of Cleaner Production 257, 120462. https://doi.org/10.1016/j.jclepro.2020.120462
Quan, C., Zhang, G., Xu, L., Wang, J., Gao, N. (2022). Improvement of the pyrolysis products of oily sludge: Catalysts and catalytic process. J Energy Inst 104, 67-79. https://doi.org/10.1016/j.joei.2022.07.004
Quek, A., Vijayaraghavan, K., Balasubramanian, R. (2011). Methylene Blue Sorption onto Oxygenated Pyrolytic Tire Char: Equilibrium and Kinetic Studies. J Environ Eng 137(9), 833-841. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000387
Qin, L., Han, J., He, X., Zhan, Y., Yu, F. (2015). Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor. J Environ Manag 154, 177-182. https://doi.org/10.1016/j.jenvman.2015.02.030
Sajadi, M., Mokhtarani, N. (2023). Catalytic pyrolysis of oil sludge using the nano alumina powder. Energy 270, 126954. https://doi.org/10.1016/j.energy.2023.126954
Sankaran, S., Pandey, S., Sumathy, K. (1998). Experimental investigation on waste heat recovery by refinery oil sludge incineration using fluidised‐bed technique. J Environ Sci Heal Part A 33(5), 829-845. https://doi.org/10.1080/10934529809376764
Santos, J., Jahangiri, H., Bashir, M.A., Hornung, A., Ouadi, M. (2020). The Upgrading of Bio-Oil from the Intermediate Pyrolysis of Waste Biomass Using Steel Slag as a Catalyst. ACS Sustain Chem Eng 8(50), 18420-18432. https://doi.org/10.1021/acssuschemeng.0c05536
Shen, Y., Chen, X., Wang, J., Ge, X., Chen, M. (2016). Oil sludge recycling by ash-catalyzed pyrolysis-reforming processes. Fuel 182, 871-878. https://doi.org/10.1016/j.fuel.2016.05.102
Shie, J.-L., Lin, J.-P., Chang, C.-Y., Shih, S.-M., Lee, D.-J., Wu, C.-H. (2004). Pyrolysis of oil sludge with additives of catalytic solid wastes. J Anal Appl Pyrolysis 71(2), 695-707. https://doi.org/10.1016/j.jaap.2003.10.001
Silva, D.C., Silva, A.A., Melo, C.F., Marques, R.C. (2017). Production of oil with potential energetic use by catalytic co-pyrolysis of oil sludge from offshore petroleum industry. J. Anal Appl Pyrolysis 124, 290-297. https://doi.org/10.1016/j.jaap.2017.01.021
Siva, M., Onenc, S., Uçar, S., Yanik, J. (2013). Influence of oily wastes on the pyrolysis of scrap tire. Energy Convers Manag 75, 474-481. https://doi.org/10.1016/j.enconman.2013.06.055
Song, Q., Zhao, H.Y., Jia, J.W., Zhang, F., Wang, Z.P., Lv, W., Yang, L., Zhang, W., Zhang, Y. Shu X. (2019). Characterization of the products obtained by pyrolysis of oil sludge with steel slag in a continuous pyrolysis-magnetic separation reactor. Fuel 255, 115711. https://doi.org/10.1016/j.fuel.2019.115711
Suelves, I., Lázaro, M.J., Diez, M.A., Moliner, R. (2002). Characterization of Chars Obtained from Co-pyrolysis of Coal and Petroleum Residues. Energy & Fuels 16(4), 878-886. https://doi.org/10.1021/ef010264m
Sun, B., Huo, J., Liu, H., Che,D., Guo,S. (2023). Elucidation of synergistic effects in straw/sludge co-pyrolysis through gaseous product monitoring and biochar analysis. J Energy Inst 106, 101151. https://doi.org/10.1016/j.joei.2022.11.011
Sun, Y., Seetharaman, S., Zhang, Z. (2018). Integrating biomass pyrolysis with waste heat recovery from hot slags via extending the C-loops: Product yields and roles of slags. Energy 149, 792-803. https://doi.org/10.1016/j.energy.2018.02.119
Suntivarakorn, R., Treedet, W., Singbua, P., Teeramaetawat, N. (2018). Fast pyrolysis from Napier grass for pyrolysis oil production by using circulating Fluidized Bed Reactor: Improvement of pyrolysis system and production cost. Energy Reports 4, 565-575. https://doi.org/10.1016/j.egyr.2018.08.004
Tripathi, M., Sahu, J.N., Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review Renew Sust Energ Rev 55, 467-481. https://doi.org/10.1016/j.rser.2015.10.122
Tang, Y., Alam, M.S., Konhauser, K.O., Alessi, D.S., Xu, S., Tian, W., Liu, Y. (2019). Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater. J Clean Prod 209, 927-936. https://doi.org/10.1016/j.jclepro.2018.10.268
Tao, Y., Li, C., Li, J., Yan, B.B., Chen, G.Y., Cheng, Z.J., Li, W.Q., Lin, F.W., Hou, L. (2020). Multi-step separation of different chemical groups from the heavy fraction in biomass fast pyrolysis oil. Fuel Process Technol 202, 106366. https://doi.org/10.1016/j.fuproc.2020.106366
Teng, Q., Zhang, D., Yang, C. (2021). A review of the application of different treatment processes for oily sludge. Environ Sci Pollut Res 28(1), 121-132. https://doi.org/10.1007/s11356-020-11176-2
Tian, Y., Li, J., Yan, X., Whitcombe, T., Thring, R. (2019). Co-pyrolysis of metal contaminated oily waste for oil recovery and heavy metal immobilization. J Hazard Mater 373, 1-10. https://doi.org/10.1016/j.jhazmat.2019.03.061
Wahab, M.A., Ates, F., Yildirir, E., Miskolczi, N. (2023). Investigation of thermal degradation kinetics and catalytic pyrolysis of industrial sludge produced from textile and leather industrial wastewater. Biomass Convers Biorefinery 13(12), 11187-11201. https://doi.org/10.1007/s13399-021-02183-5
Wang, X., Wang, Q., Wang, S., Li, F., Guo, G. (2012). Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oil sludge. Bioresour Technol 111, 308-315. https://doi.org/10.1016/j.biortech.2012.01.158
Wang, C., Wang, W., Lin, L., Zhang, F., Zhang, R., Sun, J., Song, Z., Mao, Y., Zhao, X. (2020). A stepwise microwave synergistic pyrolysis approach to produce sludge-based biochars: Feasibility study simulated by laboratory experiments. Fuel 272, 117628. https://doi.org/10.1016/j.fuel.2020.117628
Wang, X., Chi, Q., Liu, X., Wang, Y. (2019). Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge. Chemosphere 216, 698-706. https://doi.org/10.1016/j.chemosphere.2018.10.189
Wang, Z., Gong,Z., Wang, Z., Li, X., Chu, Z. (2021). Application and development of pyrolysis technology in petroleum oily sludge treatment. Environ Eng Res 26(1), 1-15. https://doi.org/10.4491/eer.2019.460
Wang, Z.Q., Guo, Q.J., Liu, X.M., Cao, C.Q. (2007). Low temperature pyrolysis characteristics of oil sludge under various heating conditions. Energy Fuel 21, 957-962. https://doi.org/10.1021/ef060628g
Wang, S. (2008). Application of Solid Ash Based Catalysts in Heterogeneous Catalysis. Environ Sci Technol 42(19), 7055-7063. https://doi.org/10.1021/es801312m
Wang, A.Y., Sun, K., Wu, L., Wu, P., Zeng, W., Tian, Z., Huang, Q.-X. (2020). Co-carbonization of biomass and oily sludge to prepare sulfamethoxazole super-adsorbent materials. Sci Total Environ 698, 134238. https://doi.org/10.1016/j.scitotenv.2019.134238
Wang, J., Sun, C., Lin, B.-C., Huang, Q.-X., Ma, Z,-Y., Chi, Y., Yan, J.-H. (2018). Micro- and mesoporous-enriched carbon materials prepared from a mixture of petroleum-derived oily sludge and biomass. Fuel Process Technol 171, 140-147. https://doi.org/10.1016/j.fuproc.2017.11.013
Wang, Y., Sun, T., Tong, L., Gao, Y., Zhang, H., Zhang, Y., Wang, Z., Zhu, S. (2023). Non-free Fe dominated PMS activation for enhancing electro-Fenton efficiency in neutral wastewater. J Electroanal Chem 928, 117062. https://doi.org/10.1016/j.jelechem.2022.117062
Wang, Y., Dong, B., Fan, Y., Hu, Y., Zhai, X., Deng, C., Xu, Y., Shen, D., Dai, X. (2019). Nitrogen transformation during pyrolysis of oilfield sludge with high polymer content. Chemosphere 219, 383-389. https://doi.org/10.1016/j.chemosphere.2018.11.171
Wen, Y., Xie, Y., Jiang, C., Li, W., Hou, Y. (2021). Products distribution and interaction mechanism during co-pyrolysis of rice husk and oily sludge by experiments and reaction force field simulation. Bioresour Technol 329, 124822. https://doi.org/10.1016/j.biortech.2021.124822
Wu, Z., Yin, J., Wang, J. (2020). Study on the Role of Microwave Absorbent in Microwave Pyrolysis of Oily Sludge. International Core Journal of Engineering 6(12), 417-420. https://api.semanticscholar.org/CorpusID:244486312
Xie, Q., Chen, Z., Zhou, Y., Pan, T., Duan, Y., Yu, S., Liang, X., Wu, Z., Ji, W., Nie, Y. (2023). Efficient Treatment of Oily Sludge via Fast Microwave-Assisted Pyrolysis, Followed by Thermal Plasma Vitrification. Molecules 28(10). https://doi.org/10.3390/molecules28104036
Xiao, Q., Chen, W., Tian, D., Shen, F., Hu, J., Long, L., Zeng, Y., Yang, G., Deng, S. (2019). Integrating the bottom ash residue from biomass power generation into anaerobic digestion to improve biogas. https://doi.org/10.1016/j.cej.2019.123946
Xie, S., Yu, G., Li, C., Li, J., Wang, G., Dai, S., Wang, Y. (2020). Treatment of high-ash industrial sludge for producing improved char with low heavy metal toxicity. J Anal Appl Pyrolysis 150, 104866. https://doi.org/10.1016/j.jaap.2020.104866
Xu, H., Xu, H., Hungwe, D., Yang, P., Yu, M., Cheng, S., Yoshikawa, K., Takahashi, F. (2024). Oil sludge addition enables prediction of biomass pyrolysis product profiles by synergistic behaviors between biomass components and oil sludge. Appl Energy 362, 123036. https://doi.org/10.1016/j.apenergy.2024.123036
Xu, H., Cheng, S., Hungwe,D., Yoshikawa, K., Takahashi, F. (2022). Co-pyrolysis coupled with torrefaction enhances hydrocarbons production from rice straw and oil sludge: The effect of torrefaction on co-pyrolysis synergistic behaviors. Appl Energy 327, 120104. https://doi.org/10.1016/j.apenergy.2022.120104
Yang, P., Zhou, P., Li, Y., Qu,C., Zhang, N. (2018). Recent development in pyrolytic catalysts of oil sludge. Pet Sci Technol 36(0), 520-524. https://doi.org/10.1080/10916466.2018.1431661
Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12-13), 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013
Yang,Z., Kumar, A., Apblett, A.W., Moneeb, A.M. (2017). Co-Pyrolysis of torrefied biomass and methane over molybdenum modified bimetallic HZSM-5 catalyst for hydrocarbons production. Green Chem 19(3), 757-768 https://doi.org/10.1039/C6GC02497A
Yang, Z., Wu, Y., Zhang, Z., Li, H., Li, X., Egorov, R.I., Strizhak, P. A., Gao, X. (2019). Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects. Renew. Sustain Energy Rev 103, 384-398. https://doi.org/10.1016/j.rser.2018.12.047
Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., Xi, Y.Q. (2015). A comprehensive review on the applications of coal fly ash. Earth-Science Rev 141, 105-121. https://doi.org/10.1016/j.earscirev.2014.11.016
Yu, H., Lin, F., Guo, X,. Yao, H., Zheng, F., Li, J., Zhang, M., Li, R., Yan, B., Chen, G. (2024). Co-pyrolysis of saw dust and oily sludge with waste-heat utilization of steel slag on rotary kiln simulated engineering practice. Fuel 364, 131012. https://doi.org/10.1016/j.fuel.2024.131012
Yu, Y., Yang, C., Li, J., Zhu, Y., Yan, Z., Zhang, H. (2020). Screening of inexpensive and efficient catalysts for microwave-assisted pyrolysis of ship oil sludge. J Anal Appl Pyrolysis 152, 104971. https://doi.org/10.1016/j.jaap.2020.104971
Yu, C., Dongxu, L., Hongyu, C., Suiyi, Z., Xianze, W., Jiakuan, Y., Xinfeng, X., Eskola, J., Dejun, G.B. (2022). Review of resource utilization of Fe-rich sludges: purification, upcycling, and application in wastewater treatment. Environ Rev 30(3), 460-484. https://doi.org/10.1139/er-2021-0038
Zhao, M.., Wang, X., Liu, D., Li, Z., Guo, S., Zhu, W., Shi, N., Wen, F., Dong, J. (2020). Insight into essential channel effect of pore structures and hydrogen bonds on the solvent extraction of oily sludge. J Hazard Mater 389, 121826. https://doi.org/10.1016/j.jhazmat.2019.121826
Zhao, K., Shu, Y., Li, F., Peng, G. (2023). Bimetallic catalysts as electrocatalytic cathode materials for the oxygen reduction reaction in microbial fuel cell: A review. Green Energy Environ 8(4), 1043-1070. https://doi.org/10.1016/j.gee.2022.10.007
Zhao, S., Zhou, X., Wang, C., Jia, H. (2018). Dewatering and low-temperature pyrolysis of oily sludge in the presence of various agricultural biomasses. Environ Technol 39(21), 2715-2723. https://doi.org/10.1080/09593330.2017.1365938
Zhu, J., Yang, Y., Chen, Y., Yang, L., Wang, Y., Zhu, Y., Chen, H. (2018). Co-pyrolysis of textile dyeing sludge and four typical lignocellulosic biomasses: Thermal conversion characteristics, synergetic effects and reaction kinetics. Int J Hydrogen Energy 43(49), 22135-22147. https://doi.org/10.1016/j.ijhydene.2018.10.058
Zhu, S., Wang, Z., Lin, X., Sun, T., Qu, Z., Chen, Y., Su, T., Huo, Y. (2020). Effective recycling of Cu from electroplating wastewater effluent via the combined Fenton oxidation and hydrometallurgy route. J Environ Manage 271, 110963. https://doi.org/10.1016/j.jenvman.2020.110963
Zhu, J., Zhu, L., Guo, D., Chen, Y., Wang, X., Zhu, Y. (2020). Co-pyrolysis of petrochemical sludge and sawdust for syngas production by TG-MS and fixed bed reactor. Int J Hydrogen Energy 45(55), 30232-30243. https://doi.org/10.1016/j.ijhydene.2020.08.092
Zhu, X.F., Zhao, L., Fu, F.Y., Yang, Z.B., Li, F., Yuan, W.Y., Zhou, M.Y., Fang, W., Zhen, G.Y., Lu, X.Q., Zhang, X.D. (2019). Pyrolysis of pre-dried dewatered sewage sludge under different heating rates: Characteristics and kinetics study. Fuel 255, 115591. https://doi.org/10.1016/j.fuel.2019.05.174
Zhou, X., Jia, H., Qu, C., Fan, D., Wang, C. (2017). Low-temperature co-pyrolysis behaviours and kinetics of oily sludge: effect of agricultural biomass. Environ Technol 38, 361-369. https://doi.org/10.1080/09593330.2016.1194481
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2025 Ye. Aibuldinov, N. Nurgaliyev, M. Petrov , G. Abdiyussupov, M. Omirzak (Author)

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.