Fast Pyrolysis Technology with Solid Heat Carrier for Municipal Solid Waste Processing
Views: 4 / PDF downloads: 3
DOI:
https://doi.org/10.32523/2616-6771-2025-150-1-11-35Keywords:
Municipal Solid Waste (MSW), Fast Pyrolysis, Solid Heat Carrier, Waste-to-Energy, Techno-Economic AnalysisAbstract
Municipal solid waste (MSW) recycling is critical in addressing the environmental challenges posed by increasing urbanization and waste generation. This study explores the use of fast pyrolysis technology with solid heat carriers for efficient MSW processing. The technology, originally developed for oil shale processing, involves the thermal decomposition of waste in an oxygen-free environment using its own ash as a heat carrier. This method produces valuable outputs, including synthetic oil, gas, thermal and electrical energy, construction materials, and ferroalloys. The study conducts a comprehensive techno-economic analysis of fast pyrolysis plants with capacities of 150,000 tons/year (UTT-500) and 1,000,000 tons/year (UTT-3000), assessing their technical feasibility, economic viability, and environmental performance. Results indicate that this technology can significantly reduce harmful emissions compared to traditional incineration and offers greater versatility in processing various waste types. The findings support the potential of fast pyrolysis to enhance MSW management, aligning with circular economy principles and contributing to sustainable waste management practices. This research underscores the need for innovative solutions to improve recycling efficiency and reduce environmental impact, addressing the growing waste management challenges in urban settings.
Downloads
References
Asadullah, M., Ab Rasid, N. S., Kadir, S. A., & Azdarpour, A. (2013). Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell. Biomass and Bioenergy, 59, 316–324. https://doi.org/10.1016/j.biombioe.2013.08.037
Asif, M., Laghari, M., Abubakar, A. M., Suri, S. K., Wakeel, A., & Siddique, M. (2025). Review on Municipal Solid Waste, Challenges and Management Policy in Pakistan. Portugaliae Electrochimica Acta, 43(4), 249–258. https://doi.org/10.4152/pea.2025430404
Assi, A., Bilo, F., Zanoletti, A., Ponti, J., Valsesia, A., La Spina, R., Zacco, A., & Bontempi, E. (2020). Zero-waste approach in municipal solid waste incineration: Reuse of bottom ash to stabilize fly ash. Journal of Cleaner Production, 245, 118779. https://doi.org/10.1016/j.jclepro.2019.118779
Cui, W., Wei, Y., & Ji, N. (2024). Global trends of waste-to-energy (WtE) technologies in carbon neutral perspective: Bibliometric analysis. Ecotoxicology and environmental safety, 270, 115913. https://doi.org/10.1016/j.ecoenv.2023.115913
Farzadkia, M., Mahvi, A. H., Norouzian Baghani, A., Sorooshian, A., Delikhoon, M., Sheikhi, R., & Ashournejad, Q. (2021). Municipal solid waste recycling: Impacts on energy savings and air pollution. Journal of the Air & Waste Management Association (1995), 71(6), 737–753. https://doi.org/10.1080/10962247.2021.1883770
Gerasimov, G., Khaskhachikh, V., Potapov, O., Dvoskin, G., Kornileva, V., & Dudkina, L. (2019). Pyrolysis of sewage sludge by solid heat carrier. Waste Management, 87, 218–227. https://doi.org/10.1016/j.wasman.2019.02.016
Guan, D., Zhao, J., Wang, Y., Fu, Z., Zhang, D., Zhang, H., Xie, J., Sun, Y., Zhu, J., & Wang, D. (2024). A critical review on sustainable management and resource utilization of digestate. Process safety and environmental protection, 183, 339–354. https://doi.org/10.1016/j.psep.2024.01.029
Kasiński, S., & Dębowski, M. (2024). Municipal Solid Waste as a Renewable Energy Source: Advances in Thermochemical Conversion Technologies and Environmental Impacts. Energies, 17(18), 4704. https://doi.org/10.3390/en17184704
Kaza, S., Yao, L.C., Bhada-Tata, P., Van Woerden, F., & Thierry Michel Rene, M. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-1329-0
Kowalski, Z., Makara, A., Kulczycka, J., Generowicz, A., Kwaśnicki, P., Ciuła, J., & Gronba-Chyła, A. (2024). Conversion of Sewage Sludge into Biofuels via Different Pathways and Their Use in Agriculture: A Comprehensive Review. Energies, 17(6), 1383. https://doi.org/10.3390/en17061383
Kumar, R., Sharma, S., Kumar, A., Singh, R., Awwad, F. A., Khan, M. I., & Ismail, E. A. A. (2024). Sustainable energy recovery from municipal solid wastes: An in-depth analysis of waste-to-energy technologies and their environmental implications in India. Energy Exploration & Exploitation, 43(1), 3–28. https://doi.org/10.1177/01445987231210323
Li, N., He, M., Lu, X., Yan, B., Duan, X., Chen, G., Wang, S., & Hou, L. (2022). Municipal solid waste derived biochars for wastewater treatment: Production, properties and applications. Resources conservation and recycling, 177, 106003. https://doi.org/10.1016/j.resconrec.2021.106003
Liang, Y., Xu, D., Feng, P., Hao, B., Guo, Y., & Wang, S. (2021). Municipal sewage sludge incineration and its air pollution control. Journal of Cleaner Production, 295, 126456. https://doi.org/10.1016/j.jclepro.2021.126456
Liu, J., Kua, H. W., Wang, C.-H., Tong, Y. W., Zhang, J., & Peng, Y. (2023). Improving urban ecosystem holistic sustainability of municipal solid waste-to-energy strategy using extended exergy accounting analysis. Science of the Total Environment, 904, 166730. https://doi.org/10.1016/j.scitotenv.2023.166730
Louzizi, T., Chakir, E., & Sadoune, Z. (2024). A comprehensive review on solid waste management in Morocco: Assessment, challenges and potential transition to a circular economy. Euro-Mediterranean Journal for Environmental Integration. https://doi.org/10.1007/s41207-024-00662-5
Ma, J., & Hipel, K. W. (2016). Exploring social dimensions of municipal solid waste management around the globe - A systematic literature review. Waste Management (New York, N.Y.), 56, 3–12. https://doi.org/10.1016/j.wasman.2016.06.041
Moradi, R., Yazdi, M., Haghighi, A., & Nedjati, A. (2024). Sustainable resilient E-waste management in London: A circular economy perspective. Heliyon, 10(13), е34071. https://doi.org/10.1016/j.heliyon.2024.e34071
Narayana Sarma, R., & Vinu, R. (2023). An assessment of sustainability metrics for waste-to-liquid fuel pathways for a low carbon circular economy. Energy Nexus, 12, 100254. https://doi.org/10.1016/j.nexus.2023.100254
Nassajfar, M. N., Abdulkareem, M., Horttanainen, M. (2024). End-of-life options for printed electronics in municipal solid waste streams: A review of the challenges, opportunities, and sustainability implications. Flexible and Printed Electronics, 9(3), 033002. https://doi.org/10.1088/2058-8585/ad699b
Potapov, O. P. (2016). Experience and prospects of oil shale utilization for power production in Russia. Thermal Engineering, 63(9), 643–647. https://doi.org/10.1134/S0040601516080097
Potapov, O. P., Khaskhachikh, V. V, Gerasimov, G. Y. (2017). State-of-the - Art technologies of oil shale thermal processing. Journal of Physics: Conference Series, 891, 12236. https://doi.org/10.1088/1742-6596/891/1/012236
Rauch, R., Kiros, Y., Engvall, K., Kantarelis, E., Brito, P., Nobre, C., Santos, S. M., & Graefe, P. A. (2024). Hydrogen from Waste Gasification. Hydrogen, 5(1), 70–101. https://doi.org/10.3390/hydrogen5010006
Razzak, S.A. (2024). Municipal Solid and Plastic Waste Co-pyrolysis Towards Sustainable Renewable Fuel and Carbon Materials: A Comprehensive Review. Chemistry-an asian journal, 19(17), e202400307. https://doi.org/10.1002/asia.202400307
Ren, Z., & Zuo, G. (2024). Challenges of Implementing Municipal Solid Waste Separation Policy in China. Sustainability, 16(18), 8081. https://doi.org/10.3390/su16188081
Sarker, T. R., Ethen, D. Z., Asha, H. H., Islam, S., & Ali, Md. R. (2024). Transformation of municipal solid waste to biofuel and bio-chemicals - A review. International journal of environmental science and technology, 22, 3811–3832. https://doi.org/10.1007/s13762-024-05975-0
Sharma, P., Bano, A., Singh, S. P., Varjani, S., & Tong, Y. W. (2024). Sustainable Organic Waste Management and Future Directions for Environmental Protection and Techno-Economic Perspectives. Current Pollution Reports, 10(3), 459–477. https://doi.org/10.1007/s40726-024-00317-7
Traven, L. (2023). Sustainable energy generation from municipal solid waste: A brief overview of existing technologies. Case Studies in Chemical and Environmental Engineering, 8, 100491. https://doi.org/10.1016/j.cscee.2023.100491
Tugov, A. N., Ots, A., Siirde, A., Sidorkin, V. T., & Ryabov, G. A. (2016). Development of measures to improve technologies of energy recovery from gaseous wastes of oil shale processing. Thermal Engineering, 63(6), 430–438. https://doi.org/10.1134/S0040601516060082
Vanchurin, V., Wolf, Y. I., Katsnelson, M. I., & Koonin, E. V. (2022). Toward a theory of evolution as multilevel learning. Proceedings of the National Academy of Sciences, 119(6), e2120037119. https://doi.org/10.1073/pnas.2120037119
Vinnichenko, V., Shul’Ga, I., & Saffioti, P. (2023). Ecological feasibility of pyrolysis in comparison with the incineration of municipal solid waste, 2490(1), 050006. https://doi.org/10.1063/5.0151894
Volkov, E.P., & Stelmahh, G.F. (1999). The Stages of Research on Creating Commercial Units for Processing Oil Shale Fines: Development of the “Galoter” Process in 1944–1999. Oil Shale, 16(2), 161–185. https://doi.org/10.3176/oil.1999.2.08
Vukovic, N., & Makogon, E. (2022). Waste-to-Energy Generation: Complex Efficiency Analysis of Modern Technologies. Sustainability (Switzerland), 14(21), 13814. https://doi.org/10.3390/su142113814
Wang, J., & Wang, S. (2019). Preparation, modification and environmental application of biochar: A review. Journal of cleaner production, 227, 1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282
Yorgun, S., & Yildiz, D. (2015). Slow pyrolysis of paulownia wood: Effects of pyrolysis parameters on product yields and bio-oil characterization. Journal of Analytical and Applied Pyrolysis, 114, 68–78. https://doi.org/10.1016/j.jaap.2015.05.003
Zhang, Y., Wang, L., Chen, L., Ma, B., Zhang, Y., Ni, W., Tsang, D. C. W. (2021). Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. Journal of Hazardous Materials, 411, 125132. https://doi.org/10.1016/j.jhazmat.2021.125132
Zhou, W., Chai, J., Xu, Z., Qin, Y., Cao, J., & Zhang, P. (2024). A review of existing methods for predicting leachate production from municipal solid waste landfills. Environmental Science and Pollution Research, 31(11), 16131–16149. https://doi.org/10.1007/s11356-024-32289-y
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ye. Aibuldinov, N. Nurgaliev, R. Safarov, Zh. Iskakova, A. Kolpek, T. Mashan, L. Kusepova (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.