Facile thermal oxidation and carbon coating strategy for fabricating a 3D Zn/ZnO@C anode
Views: 25 / PDF downloads: 12
DOI:
https://doi.org/10.32523/2616-6771-2025-152-3-92-105Keywords:
lithium-ion batteries, electrochemistry, energy storage systems, electrolytes, batteries with a 3D structureAbstract
With the increasing demand for efficient and environmentally friendly energy storage, developing alternatives to commercial graphite anodes in lithium-ion batteries (LIBs) has become a major research focus. Zinc oxide (ZnO) is a promising candidate due to its high theoretical capacity (978 mAh/g), but its practical application is limited by large volume expansion, low electrical conductivity, and poor cycling stability. In this study, a three-dimensional (3D) Zn/ZnO foam was synthesized via thermal oxidation and then coated with carbon through carbonization of polyethylene oxide (PEO). The 3D porous structure facilitates ion and electron transport, while the carbon coating mitigates volume changes during cycling and enhances overall conductivity. Structural and chemical analyses using XRD, SEM, SEM-EDS, and FTIR confirmed the successful fabrication of the Zn/ZnO@C composite. Electrochemical tests showed that Zn/ZnO@C maintained a specific capacity of approximately 380 mAh/g after 100 cycles at a current density of 50 mA/g, compared to only 100 mAh/g for the uncoated Zn/ZnO sample. This significant improvement in performance highlights the potential of carbon-coated Zn/ZnO foam as a high-performance anode material for next-generation lithium-ion batteries.
Downloads
References
Abdelrazek, E.M., Abdelghany, A.M., Badr, S.I., Morsi, M.A. (2018). Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. Journal of Materials Research and Technology 7(4), 419–431. https://doi.org/10.1016/j.jmrt.2017.06.009
Arinova, A., Kalimuldina, G., Nurpeissova, A., Bakenov, Z. (2023). Electrophoretic Deposition of Poly(ethylene oxide) Gel-Polymer Electrolyte for 3D NiO/Ni Foam Anode Based Lithium-Ion Batteries. Journal of The Electrochemical Society 170(10), 100501. https://doi.org/10.1149/1945-7111/acfe3e
Bai, Z., Zhang, Y., Fan, N., Guo, C., Tang, B. (2014). One-step synthesis of ZnO@C nanospheres and their enhanced performance for lithium-ion batteries. Materials Letters 119, 16–19. https://doi.org/10.1016/j.matlet.2013.12.060
Belliard, F., Irvine, J.T.S. (2001). Electrochemical performance of ball-milled ZnO±SnO2 systems as anodes in lithium-ion battery. Journal of Power Sources 97-98, 219-222. https://doi.org.10.1016/S0378-7753(01)00544-4
Cai, Z., Ou, Y., Wang, J., Xiao, R., Fu, L., Yuan, Z., Zhan, R., Sun, Y. (2020). Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Materials 27, 205–211. https://doi.org/10.1016/j.ensm.2020.01.032
Chou, H.S., Yang, K.Di, Xiao, S.H., Patil, R.A., Lai, C.C., Vincent Yeh, W.C., Ho, C.H., Liou, Y., Ma, Y.R. (2019). Temperature-dependent ultraviolet photoluminescence in hierarchical Zn, ZnO and ZnO/Zn nanostructures. Nanoscale 11(28), 13385–13396. https://doi.org/10.1039/c9nr05235f
Ding, Y., Sun, J., Liu, X. (2019). Carbon-decorated flower-like ZnO as high-performance anode materials for Li-ion batteries. Ionics 25(9), 4129–4136. https://doi.org/10.1007/s11581-019-02981-y
Gachot, G., Grugeon, S., Armand, M., Pilard, S., Guenot, P., Tarascon, J. M., Laruelle, S. (2008). Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. Journal of Power Sources 178(1), 409–421. https://doi.org/10.1016/j.jpowsour.2007.11.110
Ghosh, M., Raychaudhuri, A.K. (2008). Ionic environment control of visible photoluminescence from ZnO nanoparticles. Applied Physics Letters 93(12). https://doi.org/10.1063/1.2987479
Hao, X.P., Xu, Z., Li, C.Y., Hong, W., Zheng, Q., Wu, Z.L. (2020). Kirigami-Design-Enabled Hydrogel Multimorphs with Application as a Multistate Switch. Advanced Materials 32(22). https://doi.org/10.1002/adma.202000781
Huang, X.H., Xia, X.H., Yuan, Y.F., Zhou, F. (2011). Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochimica Acta 56(14), 4960–4965. https://doi.org/10.1016/j.electacta.2011.03.129
Issatayev, N., Abdumutaliyeva, D., Tashenov, Y., Yeskozha, D., Seipiyev, A., Bakenov, Z., Nurpeissova, A. (2024). Three-dimensional carbon coated and high mass-loaded NiO@Ni foam anode with high specific capacity for lithium ion batteries. RSC Advances 14(54), 40069–40076. https://doi.org/10.1039/d4ra07119k
Issatayev, N., Adylkhanova, A., Salah, M., Bakenov, Z., Kalimuldina, G. (2024). Room temperature growth of NiS hierarchical nanoflowers on the flexible electrode surface as a cathode for lithium-ion batteries. Materials Letters 354. https://doi.org/10.1016/j.matlet.2023.135341
Issatayev, N., Nuspeissova, A., Kalimuldina, G., Bakenov, Z. (2021). Three-dimensional foam-type current collectors for rechargeable batteries: A short review. Journal of Power Sources Advances 10. https://doi.org/10.1016/j.powera.2021.100065
Khac, V., Bui, H., Pham, T.N., Hur, J., Lee, Y.-C., Bui, V.K.H., Pham, T.N., Hur, J., Lee, Y., Julien, C.M. (2021). Review of ZnO Binary and Ternary Composite Anodes for Lithium-Ion Batteries. https://doi.org/10.3390/nano
Kumar, K.K., Ravi, M., Pavani, Y., Bhavani, S., Sharma, A.K., Narasimha Rao, V.V.R. (2014). Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. Journal of Membrane Science 454, 200–211. https://doi.org/10.1016/j.memsci.2013.12.022
Li, N., Jin, S.X., Liao, Q.Y., Wang, C.X. (2014). ZnO anchored on vertically aligned graphene: Binder-free anode materials for lithium-ion batteries. ACS Applied Materials and Interfaces 6(23), 20590–20596. https://doi.org/10.1021/am507046k
Lin, J.H., Huang, Y.J., Su, Y.P., Liu, C.A., Devan, R.S., Ho, C.H., Wang, Y.P., Lee, H.W., Chang, C.M., Liou, Y., Ma, Y.R. (2012). Room-temperature wide-range photoluminescence and semiconducting characteristics of two-dimensional pure metallic Zn nanoplates. RSC Advances 2(5), 2123–2127. https://doi.org/10.1039/c2ra00972b
Liu, J., Li, Y., Huang, X., Li, G., Li, Z. (2008). Layered double hydroxide nano- and microstructures grown directly on metal substrates and their calcined products for application as Li-ion battery electrodes. Advanced Functional Materials 18(9), 1448–1458. https://doi.org/10.1002/adfm.200701383
Liu, Y., Zhu, Y., Cui, Y. (2019). Challenges and opportunities towards fast-charging battery materials. Nature Energy 4(7), 540–550. https://doi.org/10.1038/s41560-019-0405-3
Pramanik, S., Das, S., Karmakar, R., Irsad Ali, S., Mukherjee, S., Dey, S., Chandra Mandal, A., Meikap, A.K., Kuiri, P.K. (2023). Enhancement of UV luminescence in Zn/ZnO nanocomposites synthesized by controlled thermal oxidation of Zn nano-octahedrals. Journal of Luminescence 257. https://doi.org/10.1016/j.jlumin.2023.119746
Rahdar, A., Aliahmad, M., Azizi, Y. (2015). NiO Nanoparticles: Synthesis and Characterization. JNS 5.
Shen, X., Mu, D., Chen, S., Wu, B., Wu, F. (2013). Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries. ACS Applied Materials and Interfaces 5(8), 3118–3125. https://doi.org/10.1021/am400020n
Song, R., Zhang, N., Dong, H., Wang, P., Ding, H., Wang, J., Li, S. (2022). Self-standing three-dimensional porous NiO/Ni anode materials for high-areal capacity lithium storage. Materials and Design 215. https://doi.org/10.1016/j.matdes.2022.110448
Srinivasa, N., Hughes, J.P., Adarakatti, P.S., Manjunatha, C., Rowley-Neale, S.J., Ashoka, S., Banks, C.E. (2021). Facile synthesis of Ni/NiO nanocomposites: The effect of Ni content in NiO upon the oxygen evolution reaction within alkaline media. RSC Advances 11(24), 14654–14664. https://doi.org/10.1039/d0ra10597j
Tarascon, J.-M., Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries.
Thauer, E., Zakharova, G.S., Andreikov, E.I., Adam, V., Wegener, S.A., Nölke, J.H., Singer, L., Ottmann, A., Asyuda, A., Zharnikov, M., Kiselkov, D.M., Zhu, Q., Puzyrev, I.S., Podval’naya, N.V., Klingeler, R. (2021). Novel synthesis and electrochemical investigations of ZnO/C composites for lithium-ion batteries. Journal of Materials Science 56(23), 13227–13242. https://doi.org/10.1007/s10853-021-06125-4
Tleukenov, Y.T., Kalimuldina, G., Arinova, A., Issatayev, N., Bakenov, Z., Nurpeissova, A. (2022). Polyacrylonitrile-Polyvinyl Alcohol-Based Composite Gel-Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries. Polymers 14(23). https://doi.org/10.3390/polym14235327
Wang, X., Wang, Y., Wu, M., Fang, R., Yang, X., Wang, D.W. (2022). Ultrasonication-assisted fabrication of porous ZnO@C nanoplates for lithium-ion batteries. Microstructures 2(3). https://doi.org/10.20517/microstructures.2022.11
Zhang, X.Q., Cheng, X.B., Chen, X., Yan, C., Zhang, Q. (2017). Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Advanced Functional Materials 27(10). https://doi.org/10.1002/adfm.201605989
Downloads
Published
Issue
Section
License
Copyright (c) 2025 A. Mukanova, Zh. Bakenov, A. Nurpeissova, N. Issatayev, Ye. Serik, M. Arkharbekova (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.