Production of activated carbon from biomass waste for application in supercapacitors


Views: 6 / PDF downloads: 1

Authors

DOI:

https://doi.org/10.32523/2616-6771-2025-153-4-40-54

Keywords:

supercapacitors, carbon material, activated carbon, chemical activation

Abstract

The high demand for energy-storage materials and the need for sustainable and environmentally friendly development have drawn the attention of scientists to the use of renewable resources and the utilization of biowaste. In this study, we used date kernels, an affordable and annually renewable byproduct of the food industry. Carbon-rich date kernels have the potential to serve as precursors for carbon electrodes in supercapacitors. Individual electrodes were designed to enhance cyclic stability and Coulombic efficiency. An activation process with a KOH to biochar ratio of 1:3 yielded a specific capacitance of 204 F/g, an energy density of 6.5 W/kg, and a high luminous efficacy of 47.70 W/kg for a two-electrode symmetric system at a current density of 0.2 A/g. BET analysis revealed a high surface area of ​​2423.4 m²/g for activated carbon with a KOH to biochar ratio of 1:3. In this study, the use of free-standing electrodes resulted in a high Coulombic efficiency of 99.97%, which in turn ensures the high performance of the supercapacitor.

Downloads

Download data is not yet available.

References

Béguin, F., Presser, V., Balducci, A., & Frackowiak, E. (2014). Carbons and electrolytes for advanced supercapacitors. Adv Mater, 26, 2219–2251. https://doi.org/10.1002/adma.201304137

Chen, X., Paul, R., & Dai, L. (2017). Carbon-based supercapacitors for efficient energy storage. Natl Sci Rev, 4, 453–489. https://doi.org/10.1093/nsr/nwx009

Duraisamy, N., Shenniangirivalasu, K., Dhandapani, E., Kandiah, K., Panchu, S. J., & Swart, H. C. (2025). Biomass Derived 3D Hierarchical Porous Activated Carbon for Solid‑State Symmetric Supercapacitors. Journal of Inorganic and Organometallic Polymers and Materials. https://doi.org/10.1007/s10904-025-03837-x

Elanthamilan, E., Catherin Meena, B., Renuka, N., Santhiya, M., George, J., Kanimozhi, E.P., Christy Ezhilarasi, J., & Princy Merlin, J. (2021). Walnut shell derived mesoporous activated carbon for high performance electrical double layer capacitors. J Electroanal Chem, 901, 115762. https://doi.org/10.1016/j.jelechem.2021.115762

Feng, Y., & Yang, Q. (2024). Porous carbon derived from activated banana peels for energy storage and conversion application. In: Elsevier (Eds.), Banana Peels Valorization, 229–258. https://doi.org/10.1016/B978-0-323-95937-7.00010-X

Ghosh, S., Santhosh, R., Jeniffer, S., Raghavan, V., Jacob, G., Nanaji, K., Kollu, P., Jeong, S. K., & Grace, A. N. (2019). Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Sci Rep, 9, 52006. https://doi.org/10.1038/s41598-019-52006-x

Goskula, S., Siliveri, S., Gujjula, S. R., Adepu, A. K., Chirra, S., & Narayanan, V. (2023). Development of activated sustainable porous carbon adsorbents from Karanja shell biomass and their CO2 adsorption. Biomass Convers Biorefin, 14, 32413–32425. https://doi.org/10.1007/s13399-023-05198-2

He, Z., Zhang, G., Chen, Y., Xie, Y., Zhu, T., Guo, H., & Chen, Y. (2017). The effect of activation methods on the electrochemical performance of ordered mesoporous carbon for supercapacitor applications. J Mater Sci, 52, 8161–8173. https://doi.org/10.1007/s10853-016-0536-x

Heidarinejad, Z., Dehghani, M.H., Heidari, M., Javedan, G., Ali, I., & Sillanpää, M. (2020). Methods for preparation and activation of activated carbon: a review. Environ Chem Lett, 18, 393–415. https://doi.org/10.1007/s10311-019-00955-0

Hu, Z., & Srinivasan, M. P. (1999). Preparation of high-surface-area activated carbons from coconut shell. Microporous Mesoporous Mater, 27, 11–18. https://doi.org/10.1016/S1387-1811(98)00183-8

Huang, S., Zhu, X., Sarkar, S., & Zhao, Y. (2019). Challenges and opportunities for supercapacitors. APL Mater, 7, 100902. https://doi.org/10.1063/1.5116146

Issatayev, N., Tassybay, K., Wu, N.-L., Nurpeissova, A., Bakenov, Z., & Kalimuldina, G. (2024). LiF modified hard carbon from date seeds as an anode material for enhanced low-temperature lithium-ion batteries. Carbon, 229, 119479. https://doi.org/10.1016/j.carbon.2024.119479

Laheäär, A., Przygocki, P., Abbas, Q., & Béguin, F. (2015). Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem Commun, 60, 21–25. https://doi.org/10.1016/j.elecom.2015.07.022

Lee, H.-C., Byamba-Ochir, N., Shim, W.-G., Balathanigaimani, M. S., & Moon, H. (2015). High-performance supercapacitors based on activated anthracite with controlled porosity. J Power Sources, 275, 668–674. https://doi.org/10.1016/j.jpowsour.2014.11.072

Li, G., Iakunkov, A., Boulanger, N., Lazar, O. A., Enachescu, M., Grimm, A., & Talyzin, A. V. (2023). Activated carbons with extremely high surface area produced from cones, bark and wood using the same procedure. RSC Adv, 13, 14543–14553. https://doi.org/10.1039/D3RA00820G

Li, G., Li, Y., Chen, X., Hou, X., Lin, H., & Jia, L. (2020). One-step synthesis of N, P co-doped hierarchical porous carbon nanosheets derived from pomelo peel for high-performance supercapacitors. Journal of Alloys and Compounds, 820, 153123. https://doi.org/10.1016/j.jallcom.2019.153123

Liu, Y., Tan, H., Tan, Z., & Cheng, X. (2022). Rice husk–derived capacitive carbon prepared by one-step molten salt carbonization for supercapacitors. Journal of Energy Storage, 55, 105437. https://doi.org/10.1016/j.est.2022.105437

Liang, X., Liu, R., & Wu, X. (2021). Biomass waste derived functionalized hierarchical porous carbon with high gravimetric and volumetric capacitances for supercapacitors. Microporous and Mesoporous Materials, 310, 110659. https://doi.org/10.1016/j.micromeso.2020.110659

Lin, G., Wang, F., Wang, Y., Xuan, H., Yao, R., Hong, Z., & Dong, X. (2015). Enhanced electrochemical performance of ordered mesoporous carbons by a one-step carbonization/activation treatment. J Electroanal Chem, 758, 1–7. https://doi.org/10.1016/j.jelechem.2015.10.016

Menya, E., Olupot, P.W., Storz, H., Lubwama, M., & Kiros, Y. (2018). Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review. Chem Eng Res Des, 129, 271–296. https://doi.org/10.1016/j.cherd.2017.11.008

Neimark, A. V., Lin, Y., Ravikovitch, P. I., & Thommes, M. (2009). Quenched solid density functional theory and pore size analysis of micro‑mesoporous carbons. Carbon, 47(7), 1617–1628. https://doi.org/10.1016/j.carbon.2009.01.050

Parejo-Tovar, A., & Béguin, F. (2024). The NaClO4-water eutectic electrolyte for environmentally friendly electrical double-layer capacitors operating at low temperature. Energy Storage Mater, 69, 103387. https://doi.org/10.1016/j.ensm.2024.103387

Poonam, Sharma, K., Arora, A., & Tripathi, S. K. (2019). Review of supercapacitors: Materials and devices. J Energy Storage, 21, 801–825.

Ravikovitch, P. I., & Neimark, A. V. (2006). Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir, 22(26), 11171–11179. https://doi.org/10.1021/la061560m

Rijfkogel, L. S., Ghanbarian, B., Hu, Q., & Liu, H.-H. (2019). Clarifying pore diameter, pore width, and their relationship through pressure measurements: A critical study. Mar Pet Geol, 107, 142–148. https://doi.org/10.1016/j.marpetgeo.2019.05.019

Said, B., Bacha, O., Rahmani, Y., Harfouche, N., Kheniche, H., Zerrouki, D., Belkhalfa, H., & Henni, A. (2023). Activated carbon prepared by hydrothermal pretreatment-assisted chemical activation of date seeds for supercapacitor application. Inorg Chem Commun, 155, 111012. https://doi.org/10.1016/j.inoche.2023.111012

Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem, 57, 603–619. https://doi.org/10.1351/pac198557040603

Sujiono, E. H., Zabrian, D., Zurnansyah, M., Mulyati, Z., Zharvan, V., Samnur, & Humairah, N. A. (2022). Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application. Results Chem, 4, 100291. https://doi.org/10.1016/j.rechem.2022.100291

Supiyeva, Z., Pan, X., & Abbas, Q. (2023). The critical role of nanostructured carbon pores in supercapacitors. Curr Opin Electrochem, 39, 101249. https://doi.org/10.1016/j.coelec.2023.101249

Suresh Kumar Reddy, K., Al Shoaibi, A., & Srinivasakannan, C. (2015). Impact of process conditions on preparation of porous carbon from date palm seeds by KOH activation. Clean Technol Environ Policy, 17, 1671–1679. https://doi.org/10.1007/s10098-014-0875-8

Tang, M., Meng, Y., Yang, Y., & Wu, S. (2025). Expanding the electrochemical stable window of water through propylene carbonate addition for aqueous-based energy storage devices. Chem Eng J, 504, 158831. https://doi.org/10.1016/j.cej.2024.158831

Wang, J., & Kaskel, S. (2012). KOH activation of carbon-based materials for energy storage. J Mater Chem, 22, 23710–23725. https://doi.org/10.1039/c2jm34066f

Wang, Y., Chen, Y., Zhao, H., Li, L., Ju, D., Wang, C., & An, B. (2022). Biomass‑Derived Porous Carbon with a Good Balance between High Specific Surface Area and Mesopore Volume for Supercapacitors. Nanomaterials, 12(21), 3804. https://doi.org/10.3390/nano12213804

Yan, B., Zheng, J., Feng, L., Du, C., Jian, S., Yang, W., Wu, Y. A., Jiang, S., He, S., & Chen, W. (2022). Wood‑derived biochar as thick electrodes for high‑rate performance supercapacitors. Biochar, 4(1), 50. https://doi.org/10.1007/s42773-022-00176-9

Yang, Z., Gleisner, R., Mann, D. H., Xu, J., Jiang, J., & Zhu, J. Y. (2020). Lignin based activated carbon using H3PO4 activation. Polymers, 12, 2829. https://doi.org/10.3390/polym12122829

Zhai, Z., Zhang, L., Du, T., Ren, B., Xu, Y., Wang, S., Miao, J., & Liu, Z. (2022). A review of carbon materials for supercapacitors. Mater Des, 223, 111017. https://doi.org/10.1016/j.matdes.2022.111017

Zhang, J., Chen, H., Ma, Z., Li, H., Dong, Y., Yang, H., Yang, L., Bai, L., Wei, D., & Wang, W. (2020). A lignin dissolution-precipitation strategy for porous biomass carbon materials derived from cherry stones with excellent capacitance. J Alloys Compd, 832, 155029. https://doi.org/10.1016/j.jallcom.2020.155029

Zhang, J., Chen, H., Bai, J., Xu, M., Luo, C., Yang, L., Bai, L., Wei, D., Wang, W., & Yang, H. (2020). N‑doped hierarchically porous carbon derived from grape marcs for high‑performance supercapacitors. Journal of Alloys and Compounds, 846, 157207. https://doi.org/10.1016/j.jallcom.2020.157207

Zhao, X., Wang, H., Guliqire, T., Sun, C., & Yang, C. (2024). The influence of ethylene glycol on the low-temperature electrochemical performance of carbon-based supercapacitors. Ionics, 30, 5675–5683. https://doi.org/10.1007/s11581-024-05535-z

Published

2025-12-24

Issue

Section

Chemistry

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.