Facile thermal oxidation and carbon coating strategy for fabricating a 3D Zn/ZnO@C anode


Views: 25 / PDF downloads: 12

Authors

DOI:

https://doi.org/10.32523/2616-6771-2025-152-3-92-105

Keywords:

lithium-ion batteries, electrochemistry, energy storage systems, electrolytes, batteries with a 3D structure

Abstract

With the increasing demand for efficient and environmentally friendly energy storage, developing alternatives to commercial graphite anodes in lithium-ion batteries (LIBs) has become a major research focus. Zinc oxide (ZnO) is a promising candidate due to its high theoretical capacity (978 mAh/g), but its practical application is limited by large volume expansion, low electrical conductivity, and poor cycling stability. In this study, a three-dimensional (3D) Zn/ZnO foam was synthesized via thermal oxidation and then coated with carbon through carbonization of polyethylene oxide (PEO). The 3D porous structure facilitates ion and electron transport, while the carbon coating mitigates volume changes during cycling and enhances overall conductivity. Structural and chemical analyses using XRD, SEM, SEM-EDS, and FTIR confirmed the successful fabrication of the Zn/ZnO@C composite. Electrochemical tests showed that Zn/ZnO@C maintained a specific capacity of approximately 380 mAh/g after 100 cycles at a current density of 50 mA/g, compared to only 100 mAh/g for the uncoated Zn/ZnO sample. This significant improvement in performance highlights the potential of carbon-coated Zn/ZnO foam as a high-performance anode material for next-generation lithium-ion batteries.

Downloads

Download data is not yet available.

References

Abdelrazek, E.M., Abdelghany, A.M., Badr, S.I., Morsi, M.A. (2018). Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. Journal of Materials Research and Technology 7(4), 419–431. https://doi.org/10.1016/j.jmrt.2017.06.009

Arinova, A., Kalimuldina, G., Nurpeissova, A., Bakenov, Z. (2023). Electrophoretic Deposition of Poly(ethylene oxide) Gel-Polymer Electrolyte for 3D NiO/Ni Foam Anode Based Lithium-Ion Batteries. Journal of The Electrochemical Society 170(10), 100501. https://doi.org/10.1149/1945-7111/acfe3e

Bai, Z., Zhang, Y., Fan, N., Guo, C., Tang, B. (2014). One-step synthesis of ZnO@C nanospheres and their enhanced performance for lithium-ion batteries. Materials Letters 119, 16–19. https://doi.org/10.1016/j.matlet.2013.12.060

Belliard, F., Irvine, J.T.S. (2001). Electrochemical performance of ball-milled ZnO±SnO2 systems as anodes in lithium-ion battery. Journal of Power Sources 97-98, 219-222. https://doi.org.10.1016/S0378-7753(01)00544-4

Cai, Z., Ou, Y., Wang, J., Xiao, R., Fu, L., Yuan, Z., Zhan, R., Sun, Y. (2020). Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Materials 27, 205–211. https://doi.org/10.1016/j.ensm.2020.01.032

Chou, H.S., Yang, K.Di, Xiao, S.H., Patil, R.A., Lai, C.C., Vincent Yeh, W.C., Ho, C.H., Liou, Y., Ma, Y.R. (2019). Temperature-dependent ultraviolet photoluminescence in hierarchical Zn, ZnO and ZnO/Zn nanostructures. Nanoscale 11(28), 13385–13396. https://doi.org/10.1039/c9nr05235f

Ding, Y., Sun, J., Liu, X. (2019). Carbon-decorated flower-like ZnO as high-performance anode materials for Li-ion batteries. Ionics 25(9), 4129–4136. https://doi.org/10.1007/s11581-019-02981-y

Gachot, G., Grugeon, S., Armand, M., Pilard, S., Guenot, P., Tarascon, J. M., Laruelle, S. (2008). Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. Journal of Power Sources 178(1), 409–421. https://doi.org/10.1016/j.jpowsour.2007.11.110

Ghosh, M., Raychaudhuri, A.K. (2008). Ionic environment control of visible photoluminescence from ZnO nanoparticles. Applied Physics Letters 93(12). https://doi.org/10.1063/1.2987479

Hao, X.P., Xu, Z., Li, C.Y., Hong, W., Zheng, Q., Wu, Z.L. (2020). Kirigami-Design-Enabled Hydrogel Multimorphs with Application as a Multistate Switch. Advanced Materials 32(22). https://doi.org/10.1002/adma.202000781

Huang, X.H., Xia, X.H., Yuan, Y.F., Zhou, F. (2011). Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochimica Acta 56(14), 4960–4965. https://doi.org/10.1016/j.electacta.2011.03.129

Issatayev, N., Abdumutaliyeva, D., Tashenov, Y., Yeskozha, D., Seipiyev, A., Bakenov, Z., Nurpeissova, A. (2024). Three-dimensional carbon coated and high mass-loaded NiO@Ni foam anode with high specific capacity for lithium ion batteries. RSC Advances 14(54), 40069–40076. https://doi.org/10.1039/d4ra07119k

Issatayev, N., Adylkhanova, A., Salah, M., Bakenov, Z., Kalimuldina, G. (2024). Room temperature growth of NiS hierarchical nanoflowers on the flexible electrode surface as a cathode for lithium-ion batteries. Materials Letters 354. https://doi.org/10.1016/j.matlet.2023.135341

Issatayev, N., Nuspeissova, A., Kalimuldina, G., Bakenov, Z. (2021). Three-dimensional foam-type current collectors for rechargeable batteries: A short review. Journal of Power Sources Advances 10. https://doi.org/10.1016/j.powera.2021.100065

Khac, V., Bui, H., Pham, T.N., Hur, J., Lee, Y.-C., Bui, V.K.H., Pham, T.N., Hur, J., Lee, Y., Julien, C.M. (2021). Review of ZnO Binary and Ternary Composite Anodes for Lithium-Ion Batteries. https://doi.org/10.3390/nano

Kumar, K.K., Ravi, M., Pavani, Y., Bhavani, S., Sharma, A.K., Narasimha Rao, V.V.R. (2014). Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. Journal of Membrane Science 454, 200–211. https://doi.org/10.1016/j.memsci.2013.12.022

Li, N., Jin, S.X., Liao, Q.Y., Wang, C.X. (2014). ZnO anchored on vertically aligned graphene: Binder-free anode materials for lithium-ion batteries. ACS Applied Materials and Interfaces 6(23), 20590–20596. https://doi.org/10.1021/am507046k

Lin, J.H., Huang, Y.J., Su, Y.P., Liu, C.A., Devan, R.S., Ho, C.H., Wang, Y.P., Lee, H.W., Chang, C.M., Liou, Y., Ma, Y.R. (2012). Room-temperature wide-range photoluminescence and semiconducting characteristics of two-dimensional pure metallic Zn nanoplates. RSC Advances 2(5), 2123–2127. https://doi.org/10.1039/c2ra00972b

Liu, J., Li, Y., Huang, X., Li, G., Li, Z. (2008). Layered double hydroxide nano- and microstructures grown directly on metal substrates and their calcined products for application as Li-ion battery electrodes. Advanced Functional Materials 18(9), 1448–1458. https://doi.org/10.1002/adfm.200701383

Liu, Y., Zhu, Y., Cui, Y. (2019). Challenges and opportunities towards fast-charging battery materials. Nature Energy 4(7), 540–550. https://doi.org/10.1038/s41560-019-0405-3

Pramanik, S., Das, S., Karmakar, R., Irsad Ali, S., Mukherjee, S., Dey, S., Chandra Mandal, A., Meikap, A.K., Kuiri, P.K. (2023). Enhancement of UV luminescence in Zn/ZnO nanocomposites synthesized by controlled thermal oxidation of Zn nano-octahedrals. Journal of Luminescence 257. https://doi.org/10.1016/j.jlumin.2023.119746

Rahdar, A., Aliahmad, M., Azizi, Y. (2015). NiO Nanoparticles: Synthesis and Characterization. JNS 5.

Shen, X., Mu, D., Chen, S., Wu, B., Wu, F. (2013). Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries. ACS Applied Materials and Interfaces 5(8), 3118–3125. https://doi.org/10.1021/am400020n

Song, R., Zhang, N., Dong, H., Wang, P., Ding, H., Wang, J., Li, S. (2022). Self-standing three-dimensional porous NiO/Ni anode materials for high-areal capacity lithium storage. Materials and Design 215. https://doi.org/10.1016/j.matdes.2022.110448

Srinivasa, N., Hughes, J.P., Adarakatti, P.S., Manjunatha, C., Rowley-Neale, S.J., Ashoka, S., Banks, C.E. (2021). Facile synthesis of Ni/NiO nanocomposites: The effect of Ni content in NiO upon the oxygen evolution reaction within alkaline media. RSC Advances 11(24), 14654–14664. https://doi.org/10.1039/d0ra10597j

Tarascon, J.-M., Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries.

Thauer, E., Zakharova, G.S., Andreikov, E.I., Adam, V., Wegener, S.A., Nölke, J.H., Singer, L., Ottmann, A., Asyuda, A., Zharnikov, M., Kiselkov, D.M., Zhu, Q., Puzyrev, I.S., Podval’naya, N.V., Klingeler, R. (2021). Novel synthesis and electrochemical investigations of ZnO/C composites for lithium-ion batteries. Journal of Materials Science 56(23), 13227–13242. https://doi.org/10.1007/s10853-021-06125-4

Tleukenov, Y.T., Kalimuldina, G., Arinova, A., Issatayev, N., Bakenov, Z., Nurpeissova, A. (2022). Polyacrylonitrile-Polyvinyl Alcohol-Based Composite Gel-Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries. Polymers 14(23). https://doi.org/10.3390/polym14235327

Wang, X., Wang, Y., Wu, M., Fang, R., Yang, X., Wang, D.W. (2022). Ultrasonication-assisted fabrication of porous ZnO@C nanoplates for lithium-ion batteries. Microstructures 2(3). https://doi.org/10.20517/microstructures.2022.11

Zhang, X.Q., Cheng, X.B., Chen, X., Yan, C., Zhang, Q. (2017). Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Advanced Functional Materials 27(10). https://doi.org/10.1002/adfm.201605989

Downloads

Published

2025-09-30

Issue

Section

Chemistry

Similar Articles

<< < 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.