Бензинді каталитикалық риформингтің математикалық модельдеу саласындағы жетістіктері мен болашағы


Қаралымдар: 393 / PDF жүктеулері: 63

Авторлар

DOI:

https://doi.org/10.32523/2616-6771-2025-151-2-56-86

Кілт сөздер:

каталитикалық риформинг, математикалық модель, екіфункциялы катализатор, реактор, дезактивация, кокс түзілуі, органохлорлы қосылыстар, оңтайландыру, шикізат ағындары

Аңдатпа

Бензинді каталитикалық риформинг – мотор отындарының октан санын арттыруға бағытталған маңызды өнеркәсіптік процесс. Бұл өнімдерге деген сұраныс алдағы уақытта да жоғары болып қала бермек. Осы процесті жетілдіруге, реакторлардың конфигурациясын жақсартуға және катализатор құрамын оңтайландыруға арналған зерттеулер кеңінен жүргізілуде. Каталитикалық риформинг күрделі процесс болып табылады: онда көпкомпонентті шикізат пен өнім қоспасы, екіфункциялы катализатор жүйесі, көптеген параллель және тізбекті реакциялар мен катализатордың дезактивациясы қатар жүреді. Сондықтан бұл процесті зерттеу мен оңтайландырудың негізгі құралы ретінде математикалық модельдеу кеңінен қолданылады. Бұл мақалада каталитикалық риформингтің кинетикалық модельдерін дамыту тарихына қысқаша шолу жасалып, 1959 жылдан бастап жүргізілген жұмыстар қарастырылады. Ерекше назар Томск политехникалық ұлттық зерттеу университетінде жүргізілген зерттеулерге аударылған. Бұл жерде мұнай-химия және қайта өңдеу процестерін модельдеуге арналған ғылыми мектеп қалыптасқан. Бензинді каталитикалық риформинг мысалында бейстационарлық модельдерді құрудың әдістемелік тәсілі көрсетіліп, олардың әзірленуінің негізгі қағидалары сипатталады. Модельдеу нәтижелері реактор құрылымын оңтайландыру, катализатордың қышқылдық және металлдық функцияларының тепе-теңдігін сақтау және катализатор бетінде кокс түзілуін азайту мүмкіндіктерін көрсетеді. Сондай-ақ қосымша шикізат ағындарын ескере отырып, бекітілген катализаторлы риформинг процесінің математикалық моделін жетілдіру нәтижелері берілген.

Downloads

Download data is not yet available.

Әдебиеттер тізімі

Abramin, A.L. (2010). Improvement of industrial gasoline reforming processes with a moving-bed catalyst using mathematical modeling [Sovershenstvovanie promyshlennykh protsessov riforminga benzinov s dvizhushhimsja sloem katalizatora metodom matematicheskogo modelirovanija in Russian]. Tomsk Polytechnic University, Tomsk. https://earchive.tpu.ru/handle/11683/6546

Ali, S.A., Siddiqui, M.A., Ali, M.A. (2005). Parametric study of catalytic reforming process. Reaction Kinetics and Catalysis Letters 87(1), 199–206. https://doi.org/10.1007/s11144-006-0001-y

Ancheyta-Juárez, J., Villafuerte-Macías, E. (2000). Kinetic modeling of naphtha catalytic reforming reactions. Energy and Fuels 14(5), 1032–1037. https://doi.org/10.1021/ef0000274

Ancheyta, J. (2011). Modeling and Simulation of Catalytic Reactors for Petroleum Refining. Willey & Sons. https://doi.org/10.1002/9780470933565

Antos, G.J., Aitani, A.M. (Eds.). (2004). Catalytic Naphtha Reforming, Revised and Expanded. CRC Press. https://doi.org/10.1201/9780203913505

Arab Aboosadi, Z., Jahanmiri, A.H., Rahimpour, M.R. (2011). Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method. Applied Energy 88(8), 2691–2701. https://doi.org/10.1016/j.apenergy.2011.02.017

Arani, H.M., Shirvani, M., Safdarian, K., Dorostkar, E. (2009). Lumping procedure for a kinetic model of catalytic naphtha reforming. Brazilian Journal of Chemical Engineering 26(4), 723–732. https://doi.org/10.1590/S0104-66322009000400011

Barbier, J., Corro, G., Zhang, Y., Bournonville, J.P., Franck, J. P. (1985). Coke formation on platinum-alumina catalyst of wide varying dispersion. Applied Catalysis 13(2), 245–255. https://doi.org/10.1016/S0166-9834(00)81143-4

Barbier, J., Marecot, P., Martin, N., Elassal, L., Maurel, R. (1980). Selective poisoning by coke formation on pt/Al2O3. Studies in Surface Science and Catalysis 6(C), 53–62. https://doi.org/10.1016/S0167-2991(08)65218-0

Bartholomew, C.H. (2001). Mechanisms of catalyst deactivation. Applied Catalysis A: General 212(1–2), 17–60. https://doi.org/10.1016/S0926-860X(00)00843-7

Belyi, A.S. (2005). Reforming catalysts of the PR family: Scientific foundations and technological advancement. Kinetics and Catalysis 46(5), 684–692. https://doi.org/10.1007/s10975-005-0123-7

Benitez, V., Boutzeloit, M., Mazzieri, V.A., Especel, C., Epron, F., Vera, C.R., Marécot, P., Pieck, C.L. (2007). Preparation of trimetallic Pt-Re-Ge/Al2O3 and Pt-Ir-Ge/Al2O3 naphtha reforming catalysts by surface redox reaction. Applied Catalysis A: General 319, 210–217. https://doi.org/10.1016/j.apcata.2006.12.006

Benitez, V.M., Pieck, C.L. (2010). Influence of indium content on the properties of Pt-Re/Al2O3 naphtha reforming catalysts. Catalysis Letters 136(1–2), 45–51. https://doi.org/10.1007/s10562-009-0202-x

Bishara, A., Stanislaus, A., Hussain, S. (1984). Effect of feed composition and operating conditions on catalyst deactivation and on product yield and quality during naphtha catalytic reforming. Applied Catalysis 13(1), 113–125. https://doi.org/10.1016/S0166-9834(00)83332-1

Chen, Z., Yan, Y., Elnashaie, S.S.E.H. (2004). Catalyst deactivation and engineering control for steam reforming of higher hydrocarbons in a novel membrane reformer. Chemical Engineering Science 59(10), 1965–1978. https://doi.org/10.1016/j.ces.2004.01.046

Choudhary, V.R., Mulla, S.A.R., Rane, V.H. (2000). Coupling of exothermic and endothermic reactions in oxidative conversion of ethane to ethylene over alkaline earth promoted La2O3 catalysts in presence of limited O2. Applied Energy 66(1), 51–62. https://doi.org/10.1016/S0306-2619(99)00040-9

Ciapetta, F.G., Wallace, D.N. (1972). Catalytic naphtha reforming. Catalysis Reviews 5(1), 67–158. https://doi.org/10.1080/01614947208076866

Delmon, B., Yates, J.T. (1987). Studies in surface science and catalysis. Studies in Surface Science and Catalysis 31(C), XI–XII. https://doi.org/10.1016/S0167-2991(08)65388-4

Demirbas, A. (2011). Competitive liquid biofuels from biomass. In Applied Energy 88(1), 17–28. https://doi.org/10.1016/j.apenergy.2010.07.016

Ding, M., Hayakawa, T., Zeng, C., Jin, Y., Zhang, Q., Wang, T., Ma, L., Yoneyama, Y., Tsubaki, N. (2013). Direct conversion of liquid natural gas (LNG) to syngas and ethylene using non-equilibrium pulsed discharge. Applied Energy 104, 777–782. https://doi.org/10.1016/j.apenergy.2012.12.017

Dyusembaeva, A.A., Vershinin, V.I. (2019). Modeling of Catalytic Reforming: Effect of Kinetic Parameters on the Expected Composition of Products. Kinetics and Catalysis 60(1), 106–111. https://doi.org/10.1134/S002315841901004X

Elizalde, I., Ancheyta, J. (2015). Dynamic modeling and simulation of a naphtha catalytic reforming reactor. Applied Mathematical Modelling 39(2), 764–775. https://doi.org/10.1016/j.apm.2014.07.013

Figoli, N.S., Beltramini, J.N., Barra, A.F., Martinelli, E.E., Sad, M.R., Parera, J.M. (1982). Influence of total pressure and hydrogen: hydrocarbon ratio on coke formation over naphtha-reforming catalyst. ACS Symposium Series 239–252. https://doi.org/10.1021/bk-1983-0202.ch012

Galushin, S.A. (2004). Modeling of transient processes on the surface of platinum-containing catalysts in industrial gasoline reforming reactors [Modelirovanie nestatsionarnykh protsessov na poverkhnosti platinosoderzhashhikh katalizatorov v promyshlennykh reaktorakh ustanovok riforminga benzinov in Russian]. Tomsk Polytechnic University, Tomsk. http://earchive.tpu.ru/handle/11683/6149

García-Dopico, M., García, A., Santos García, A. (2006). Modelling coke formation and deactivation in a FCCU. Applied Catalysis A: General 303(2), 245–250. https://doi.org/10.1016/j.apcata.2006.02.026

Gyngazova, M.S. (2011). Modeling the operation of gasoline reforming reactors with continuous catalyst regeneration, taking coke formation into account [Modelirovanie raboty reaktorov protsessa riforminga benzinov s nepreryvnoy regeneratsiej katalizatora s uchetom koksoobrazovanija in Russian]. Tomsk Polytechnic University, Tomsk. http://earchive.tpu.ru/handle/11683/6682

Gyngazova, M.S., Kravtsov, A.V., Ivanchina, E.D., Korolenko, M.V., Chekantsev, N.V. (2011). Reactor modeling and simulation of moving-bed catalytic reforming process. Chemical Engineering Journal 176–177, 134–143. https://doi.org/10.1016/j.cej.2011.09.128

Gyngazova, M.S., Kravtsov, A.V., Ivanchina, E.D., Korolenko, M.V., Uvarkina, D.D. (2010). Kinetic model of the catalytic reforming of gasolines in moving-bed reactors. Catalysis in Industry 2(4), 374–380. https://doi.org/10.1134/S2070050410040124

Hamied, R., Sukkar, K.A., Raouf, S. (2022). Modeling, Kinetic and Experimental optimization of Reforming Unit for ‎Al- Doura Heavy Naphtha over bi and Tri-metallic Catalysts. Iraqi Journal of Oil and Gas Research (IJOGR) 2(1), 108–121. https://doi.org/10.55699/ijogr.2022.0201.1020

Hongjun, Z., Mingliang, S., Huixin, W., Zeji, L., Hongbo, J. (2010). Modeling and simulation of moving bed reactor for catalytic naphtha reforming. Petroleum Science and Technology 28(7), 667–676. https://doi.org/10.1080/10916460902804598

Hou, W., Su, H., Hu, Y., Chu, J. (2006). Lumped kinetics model and its on-line application to commercial catalytic naphtha reforming process. CIESC Journal 57(7), 1605.

Hu, Y., Xu, W., Su, H., Chu, J. (2004). A dynamic model for naphtha catalytic reformers. Proceedings of the IEEE International Conference on Control Applications 1, 159–164. https://doi.org/10.1109/cca.2004.1387204

Hui, L., Yunchang, D., Jiongliang, Y., Zeyun, W. (1995). Study of the electrochemical performance of nickel hydroxide. Journal of Power Sources 57(1–2), 137–140. https://doi.org/10.1016/0378-7753(95)02266-X

Iranshahi, D., Pourazadi, E., Paymooni, K., Rahimpour, M.R. (2012). A novel dynamic membrane reactor concept with radial-flow pattern for reacting material and axial-flow pattern for sweeping gas in catalytic naphtha reformers. AIChE Journal 58(4), 1230–1247. https://doi.org/10.1002/aic.12664

Ivanchina, E.D. (2002). Improving industrial hydrocarbon feedstock processing technology using platinum catalysts based on an unsteady-state model [Sovershenstvovanie promyshlennoj tekhnologii pererabotki uglevodorodnogo syr’ya s ispol’zovaniem platinovykh katalizatorov na osnove nestatsionarnoy modeli in Russian]. Doctoral dissertation, Tomsk Polytechnic University, Tomsk. https://dissercat.com/content/sovershenstvovanie-promyshlennoi-tekhnologii-pererabotki-uglevodorodnogo-syrya-s-ispolzovani

Khobragade, M., Majhi, S., Pant, K.K. (2012). Effect of K and CeO2 promoters on the activity of Co/SiO2 catalyst for liquid fuel production from syngas. Applied Energy 94, 385–394. https://doi.org/10.1016/j.apenergy.2012.02.002

Kmak, W.S., Stuckey, A.N. (1973). Powerforming process studies with a kinetic simulation model. AIChE National Meeting 56a.

Koksharov, A.G. (2023). Increasing the efficiency of gasoline reforming technology by reducing coke formation intensity using a mathematical model [Povyshenie effektivnosti tekhnologii riforminga benzinov putem snizheniya intensivnosti protsessa koksoobrazovaniya s ispol’zovaniem matematicheskoy modeli in Russian]. Tomsk Polytechnic University, Tomsk. http://earchive.tpu.ru/handle/11683/74989

Koksharov, A.G., Ivanchina, E.D., Faleev, S.A., Fedyushkin, A.I. (2015). The way of increasing resource efficiency of naphtha reforming under conditions of catalyst acid and metal activity balance by mathematical modeling method. Procedia Engineering 113, 1–7. https://doi.org/10.1016/j.proeng.2015.07.276

Konstantinovich Z.I. (2016). Optimization of catalyst regeneration processes for reforming, dehydrogenation, and hydrotreating in circulation loop units [Optimizatsiya protsessov regeneratsii katalizatorov riforminga, degidrirovaniya, gidroochistki v apparatakh tsirkulyatsionnykh konturov in Russian]. https://dissercat.com/content/optimizatsiya-protsessov-regeneratsii-katalizatorovriforminga-degidrirovaniya-gidroochistki

Kostenko, A.V. (2006). Improvement of the design and efficiency of the reactor block in the catalytic reforming process of hydrocarbon feedstock [Sovershenstvovanie konstruktsii i povyshenie effektivnosti raboty reaktornogo bloka protsessa kataliticheskogo riforminga uglevodorodnogo syr’ya in Russian]. Tomsk Polytechnic University, Tomsk. https://dissercat.com/content/sovershenstvovanie-konstruktsii-i-povyshenie-effektivnosti-raboty-reaktornogo-bloka-protsess

Krane, H.G. (1959). Reactions in catalytic reforming of naphthas. Proceeding of the V World Petroleum Congress. https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/8435336

Lid, T., Skogestad, S. (2008). Data reconciliation and optimal operation of a catalytic naphtha reformer. Modeling, Identification and Control 29(4), 117–129. https://doi.org/10.4173/mic.2008.4.1

Marin, G.B., Froment, G.F., Lerou, J.J., De Backer, W. (1983). Simulation of a catalytic naphtha reforming unit. EFCE Publication Series (European Federation of Chemical Engineering) 27.

Mazzieri, V.A., Pieck, C.L., Vera, C.R., Yori, J.C., Grau, J.M. (2009). Effect of Ge content on the metal and acid properties of Pt-Re-Ge/Al2O3-Cl catalysts for naphtha reforming. Applied Catalysis A: General 353(1), 93–100. https://doi.org/10.1016/j.apcata.2008.10.024

Namioka, T., Saito, A., Inoue, Y., Park, Y., Min, T.J., Roh, S.A., Yoshikawa, K. (2011). Hydrogen-rich gas production from waste plastics by pyrolysis and low-temperature steam reforming over a ruthenium catalyst. Applied Energy 88(6), 2019–2026. https://doi.org/10.1016/j.apenergy.2010.12.053

Ostrovsky, N.M., Sokolov, V.P., Aksenova, N.V., Lukyanov, B.N. (1989). Kinetics of gasoline fraction reforming and mathematical model of the process [Kinetika riforminga benzinovykh fraktsii i matematicheskaya model’ protsessa in Russian]. Proceedings of Khimreaktor 10, Tolyatti.

Padmavathi, G., Chaudhuri, K.K. (1997). Modelling and Simulation of Commercial Catalytic Naphtha Reformers. Canadian Journal of Chemical Engineering 75(5), 930–937. https://doi.org/10.1002/cjce.5450750513

Pchelintseva, I.V. (2019). Regularities of the catalytic conversion of hydrocarbons in the gasoline reforming process under reduced pressure [Zakonomernosti kataliticheskogo prevrashhenija uglevodorodov v protsesse riforminga benzinov pri snizhenii davlenija in Russian]. Tomsk Polytechnic University, Tomsk. http://earchive.tpu.ru/handle/11683/56166

Pereira, C.S.M., Silva, V.M.T.M., Pinho, S.P., Rodrigues, A.E. (2010). Batch and continuous studies for ethyl lactate synthesis in a pervaporation membrane reactor. Journal of Membrane Science 361(1–2), 43–55. https://doi.org/10.1016/j.memsci.2010.06.014

Petrova, D.A., Gushchin, P.A., Ivanov, E.V., Lyubimenko, V.A., Kolesnikov, I.M. (2021). Modelling Industrial Catalytic Reforming of Lowoctane Gasoline. Chemistry and Technology of Fuels and Oils 57(1), 143–159. https://doi.org/10.1007/s10553-021-01234-x

Poluboyartsev, D.S. (2007). Selection and evaluation of the efficiency of Pt catalysts for the gasoline reforming process using a modeling system [Vybor i otsenka effektivnosti Pt-katalizatorov protsessa riforminga benzinov s primeneniem modeliruyushchey sistemy in Russian]. Author’s abstract of Cand. Tech. Sci. dissertation. Tomsk Polytechnic University, Tomsk. https://dissercat.com/content/vybor-i-otsenka-effektivnosti-pt-katalizatorov-protsessa-riforminga-benzinov-s-primeneniem-m

Pujadó, P.R., Rabó, J.A., Antos, G.J., Gembicki, S.A. (1992). Industrial catalytic applications of molecular sieves. Catalysis Today 13(1), 113–141. https://doi.org/10.1016/0920-5861(92)80191-O

Rahimpour, M.R., Bahmanpour, A.M. (2011). Optimization of hydrogen production via coupling of the Fischer-Tropsch synthesis reaction and dehydrogenation of cyclohexane in GTL technology. Applied Energy 88(6), 2027–2036. https://doi.org/10.1016/j.apenergy.2010.12.065

Rahimpour, M.R., Esmaili, S., Bagheri Ghalehghazi, N. (2003). A kinetic and deactivation model for industrial catalytic naphtha reforming. Iranian Journal of Science and Technology, Transaction B: Technology 27(2), 279–290.

Rahimpour, M.R., Jafari, M., Iranshahi, D. (2013). Progress in catalytic naphtha reforming process: A review. In Applied Energy 109, 79–93. https://doi.org/10.1016/j.apenergy.2013.03.080

Rahimpour, M.R., Rahmani, F., Bayat, M. (2010). Contribution to emission reduction of CO2 by a fluidized-bed membrane dual-type reactor in methanol synthesis process. Chemical Engineering and Processing: Process Intensification 49(6), 589–598. https://doi.org/10.1016/j.cep.2010.05.004

Ramage, M.P., Graziani, K.R., Krambeck, F.J. (1980). Development of mobil’s kinetic reforming model. Chemical Engineering Science 35(1–2), 41–48. https://doi.org/10.1016/0009-2509(80)80068-6

Ren, X.H., Bertmer, M., Stapf, S., Demco, D.E., Blümich, B., Kern, C., Jess, A. (2002). Deactivation and regeneration of a naphtha reforming catalyst. Applied Catalysis A: General 228(1–2), 39–52. https://doi.org/10.1016/S0926-860X(01)00958-9

Reutova, O.A., Iriskina, O.V. (2000). Model’ reaktora riforminga. I. kineticheskaya model’ dlya polifunktsional’nogo katalizatora [Reforming reactor model. I. Kinetic model for a multifunctional catalyst]. Matematicheskie Struktury i Modelirovanie [Mathematical structures and modeling] 1(5). https://cyberleninka.ru/article/n/model-reaktora-riforminga-i-kineticheskaya-model-dlya-polifunktsionalnogo-katalizatora

Roddy, D.J. (2012). Development of a CO2 network for industrial emissions. Applied Energy 91(1), 459–465. https://doi.org/10.1016/j.apenergy.2011.10.016

Rodríguez, M.A., Ancheyta, J. (2011). Detailed description of kinetic and reactor modeling for naphtha catalytic reforming. Fuel 90(12), 3492–3508. https://doi.org/10.1016/j.fuel.2011.05.022

Sharova, E.S. (2010). Improving the efficiency of the reactor unit of the gasoline reforming process with a fixed granular layer katalizatora [Povyshenie effektivnosti raboty reaktornogo uzla protsessa riforminga benzinov s nepodvizhnym zernistym sloem katalizatora in Russian]. https://dissercat.com/content/povyshenie-effektivnosti-raboty-reaktornogo-uzla-protsessa-riforminga-benzinov-s-nepodvizhny

Sharova, E.S. (2010). Improving the efficiency of the reactor unit in the gasoline reforming process with a fixed granular catalyst bed [Povyshenie effektivnosti raboty reaktornogo uzla protsessa riforminga benzinov s nepodvizhnym zernistym sloem katalizatora in Russian]. Tomsk Polytechnic University, Tomsk. https://dissercat.com/content/povyshenie-effektivnosti-raboty-reaktornogo-uzla-protsessa-riforminga-benzinov-s-nepodvizhny

Smith, R. (1959). Kinetic analysis of naphtha reforming with platinum catalyst. Chem Eng Prog 76–80.

Stijepovic, M.Z., Vojvodic-Ostojic, A., Milenkovic, I., Linke, P. (2009). Development of a kinetic model for catalytic reforming of naphtha and parameter estimation using industrial plant data. Energy and Fuels 23(2), 979–983. https://doi.org/10.1021/ef800771x

Taghvaei, H., Shirazi, M.M., Hooshmand, N., Rahimpour, M.R., Jahanmiri, A. (2012). Experimental investigation of hydrogen production through heavy naphtha cracking in pulsed DBD reactor. Applied Energy 98, 3–10. https://doi.org/10.1016/j.apenergy.2012.02.005

Taskar, U., Riggs, J.B. (1997). Modeling and Optimization of a Semiregenerative Catalytic Naphtha Reformer. AIChE Journal 43(3), 740–753. https://doi.org/10.1002/aic.690430319

Teixeira, M., Madeira, L.M., Sousa, J.M., Mendes, A. (2010). Modeling of a catalytic membrane reactor for CO removal from hydrogen streams - A theoretical study. International Journal of Hydrogen Energy 35(20), 11505–11513. https://doi.org/10.1016/j.ijhydene.2010.04.101

Vagizovna P.I. (2019). Regularities of hydrocarbon catalytic transformation in gasoline reforming at reduced pressure [Zakonomernosti kataliticheskogo prevrashcheniya uglevodorodov v protsesse riforminga benzinov pri snizhenii davleniya in Russian]. https://dissercat.com/content/zakonomernosti-kataliticheskogo-prevrashcheniya-uglevodorodov-v-protsesse-riforminga-benzino

Wei, J., Prater, C.D. (1962). The Structure and Analysis of Complex Reaction Systems. Advances in Catalysis 13(C), 203–392. https://doi.org/10.1016/S0360-0564(08)60289-8

Yusuf, A.Z., Aderemi, B.O., Patel, R., Mujtaba, I.M. (2019). Study of industrial naphtha catalytic reforming reactions via modelling and simulation. Processes 7(4). https://doi.org/10.3390/pr7040192

Yusuf, A.Z., John, Y.M., Aderemi, B.O., Patel, R., Mujtaba, I.M. (2019). Modelling, simulation and sensitivity analysis of naphtha catalytic reforming reactions. Computers and Chemical Engineering 130. https://doi.org/10.1016/j.compchemeng.2019.106531

Zagoruiko, A.N., Belyi, A.S., Smolikov, M.D. (2021). Thermodynamically consistent kinetic model for the naphtha reforming process. Industrial and Engineering Chemistry Research 60(18), 6627–6638. https://doi.org/10.1021/acs.iecr.0c05653

Zagoruiko, A.N., Belyi, A.S., Smolikov, M.D., Noskov, A.S. (2014). Unsteady-state kinetic simulation of naphtha reforming and coke combustion processes in the fixed and moving catalyst beds. Catalysis Today 220–222, 168–177. https://doi.org/10.1016/j.cattod.2013.07.016

Zaynullin, R.Z., Koledina, K.F., Gubaydullin, I.M., Akhmetov, A.F., Koledin, S.N. (2020). Kinetic Model of Catalytic Gasoline Reforming with Consideration for Changes in the Reaction Volume and Thermodynamic Parameters. Kinetics and Catalysis 61(4), 613–622. https://doi.org/10.1134/S002315842004014X

Zhorov, Y.M., Kartashev, Y.N., Panchenkov, G.M., Tatarintseva, G.M. (1980). Mathematical model of platforming under stationary conditions with allowance for isomerization reactions. Chemistry and Technology of Fuels and Oils 16(7), 429–432. https://doi.org/10.1007/BF00726749

Zhu, X., Li, Q., He, Y., Cong, Y., Yang, W. (2010). Oxygen permeation and partial oxidation of methane in dual-phase membrane reactors. Journal of Membrane Science 360(1–2), 454–460. https://doi.org/10.1016/j.memsci.2010.05.044

Жүктеулер

Жарияланды

2025-06-30

Журналдың саны

Бөлім

Химия

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.