Modeling of catalytic reforming process with fixed bed catalyst based on industrial data


Views: 1 / PDF downloads: 2

Authors

DOI:

https://doi.org/10.32523/2616-6771-2025-150-1-36-51

Keywords:

mathematical modeling, oil refining, optimization, resource efficiency, petrochemistry, catalytic reforming

Abstract

This study presents the development of a kinetic model of the catalytic reforming process using data from a commercial fixed-bed catalyst plant. Model parameters were determined by minimizing discrepancies between calculated values and industrial data, ensuring high accuracy in predicting reformate composition. The proposed model combines the simplicity of generalized approaches with the benefits of more detailed models, enabling efficient prediction of reformate composition and accounting for key process variables (temperature, pressure, hydrogen/hydrocarbon ratio, and feed rate). Validation was conducted with both laboratory isothermal data and industrial data, confirming its practical applicability. The software developed from this model demonstrated high accuracy, with calculation errors under 3% and less than 1% error in determining aromatic hydrocarbon concentration. These results confirm the model's precision, making it suitable for real-time process control and optimization. The model’s application in industry will not only increase the yield of target products and improve fuel quality but also reduce production costs by optimizing operating modes and extending catalyst life. Given tightening environmental regulations, the model is an important tool for ensuring sustainable development in oil refineries. Future research could enhance its integration with digital control systems and optimize energy efficiency in Kazakhstan’s oil and gas enterprises.

Downloads

Download data is not yet available.

References

Arani, H. M., Shirvani, M., Safdarian, K., & Dorostkar, E. (2009). Lumping procedure for a kinetic model of catalytic naphtha reforming. Brazilian Journal of Chemical Engineering, 26(4), 723–732. https://doi.org/10.1590/S0104-66322009000400011

Chen, J. (2023). Hydrogen production in fixed-bed reactors with combined reformer-burner modules by steam-ethanol reforming at different temperatures. Authorea Preprints, 6, 18. https://doi.org/10.22541/AU.167569381.13621304/V1

Chen, Z., Wang, Y., Li, Y., Wu, J., & Zhang, L. (2023). Explicit molecule-based reaction network simplification: Theory and application on catalytic reforming. Chemical Engineering Science, 277, 118833. https://doi.org/10.1016/j.ces.2023.118833

Elizalde, I., & Ancheyta, J. (2015). Dynamic modeling and simulation of a naphtha catalytic reforming reactor. Applied Mathematical Modelling, 39(3-4), 764–775. https://doi.org/10.1016/j.apm.2014.07.013

GOST 6370-83 (ST SEV 2876-81). (n.d.). Neft', nefteprodukty i prisadki. Metod opredeleniya mekhanicheskikh primesey (utratil silu) [Oil, petroleum products and additives. Method for determining mechanical impurities (invalid)]. Retrieved February 2, 2025, from https://online.zakon.kz/Document/?doc_id=30008237

Gosudarstvennyy standart Soyuza SSR. (n.d.). Neft'. Izdaniye ofitsial'noye. IPK Izdatel'stvo Standartov Moskva sertifikatsiya elektrooborudovaniya [State Standard of the Union of the SSR. Oil. Official Edition. IPK Publishing House of Standards Moscow certification of electrical equipment].

Jarullah, A. T., Ahmed, A. N., Altabbakh, B. A., & Ahmed, A.M. (2023). Design of new composites nano-catalysts for naphtha reforming process: Experiments and process modeling. Tikrit Journal of Engineering Sciences, 30(2), 46–59. https://doi.org/10.25130/TJES.30.2.6

Krane, H., Groh, A., Schulman, B., & Sinfelt, J. (1959). Reactions in catalytic reforming of naphthas.

Martínez, J., Zúñiga-Hinojosa, M. A., & Ruiz-Martínez, R. S. (2022). A thermodynamic analysis of naphtha catalytic reforming reactions to produce high-octane gasoline. Processes, 10(313), 22. https://doi.org/10.3390/PR10020313

Matematicheskoye modelirovaniye dlya prognozirovaniya raboty katalizatorov riforminga na ustanovke so statsionarnym sloyem. (n.d.). Retrieved February 25, 2025, from https://magazine.neftegaz.ru/articles/pererabotka/786371-matematicheskoe-modelirovanie-dlya-prognozirovaniya-raboty-katalizatorov-riforminga-na-ustanovke-so [Mathematical modeling for predicting the performance of reforming catalysts in a fixed bed reactor].

Mokheimer, E. M. A., Shakeel, M. R., Harale, A., Paglieri, S., & Mansour, R. B. (2024). Fuel reforming processes for hydrogen production. Fuel, 359, 130427. https://doi.org/10.1016/j.fuel.2023.130427

Pasandide, P., & Rahmani, M. (2021). Simulation and optimization of continuous catalytic reforming: Reducing energy cost and coke formation. International Journal of Hydrogen Energy, 46(43), 30005–30018. https://doi.org/10.1016/j.ijhydene.2021.06.151

Ramage, M. P., Graziani, K. R., & Krambeck, F. J. (1980). Development of Mobil’s kinetic reforming model. Chemical Engineering Science, 35(1), 41–48. https://doi.org/10.1016/0009-2509(80)80068-6

Ramage, M. P., Graziani, K. R., Schipper, P. H., Krambeck, F. J., & Choi, B. C. (1987). Kinptr (Mobil’s Kinetic Reforming Model): A review of Mobil’s industrial process modeling philosophy. Advances in Chemical Engineering, 13, 193–266. https://doi.org/10.1016/s0065-2377(08)60018-6

Rekoske, J. E., Abrevaya, H., Bricker, J. C., Zhu, X., & Bricker, M. (2017). Advances in refining technologies. In Advances in refining catalysis (pp. 3–58). CRC Press. https://doi.org/10.1201/9781315370125-2/ADVANCES-REFINING-TECHNOLOGIES-JAMES-REKOSKE-HAYIM-ABREVAYA-JEFFERY-BRICKER-XIN-ZHU-MAUREEN-BRICKER

Rodríguez, M. A., & Ancheyta, J. (2011). Detailed description of kinetic and reactor modeling for naphtha catalytic reforming. Fuel, 90(11), 3492–3508. https://doi.org/10.1016/j.fuel.2011.05.022

Russel, A. S., Gupta, S., & Deo, G. (2023). The rate determining steps and rate equation for the oxidative dry reforming of methane over supported Ni catalyst. Journal of Environmental Chemical Engineering, 11, 110479. https://doi.org/10.1016/j.jece.2023.110479

Samad, A., Ahmad, I., Kano, M., & Caliskan, H. (2023). Prediction and optimization of exergetic efficiency of reactive units of a petroleum refinery under uncertainty through artificial neural network-based surrogate modeling. Process Safety and Environmental Protection, 177, 1403–1414. https://doi.org/10.1016/j.psep.2023.07.046

Sapre, A. V., & Katzer, J. R. (2020). Some aspects of modeling in petroleum processing. In Computer-Aided Design of Catalysts (pp. 553–602). CRC Press. https://doi.org/10.1201/9781003067115-13

Sotelo-Boyás, R., & Froment, G. F. (2008). Fundamental kinetic modeling of catalytic reforming. Industrial & Engineering Chemistry Research, 48(3), 1107–1119. https://doi.org/10.1021/ie800607e

Stijepovic, M. Z., Vojvodic-Ostojic, A., Milenkovic, I., & Linke, P. (2009). Development of a kinetic model for catalytic reforming of naphtha and parameter estimation using industrial plant data. Energy and Fuels, 23(2), 979–983. https://doi.org/10.1021/ef800771x/suppl_file/ef800771x_si_001.pdf

Sundari, R., & Vaidya, P. D. (2012). Reaction kinetics of glycerol steam reforming using a Ru/Al₂O₃ catalyst. Energy and Fuels, 26(7), 4195–4204. https://doi.org/10.1021/ef300658n

Velázquez, H. D., Cerón-Camacho, R., Mosqueira-Mondragón, M. L., Hernández-Cortez, J. G., Montoya de la Fuente, J. A., Hernández-Pichardo, M. L., Beltrán-Oviedo, T. A., & Martínez- Palou, R. (2023). Recent progress on catalyst technologies for high quality gasoline production. Catalysis Reviews, 65(3), 1079–1299. https://doi.org/10.1080/01614940.2021.2003084

Wei, M., Yang, M., Qian, F., Du, W., He, W., & Zhong, W. (2017). Dynamic modeling and economic model predictive control with production mode switching for an industrial catalytic naphtha reforming process. Industrial & Engineering Chemistry Research, 56(33), 8961–8971. https://doi.org/10.1021/acs.iecr.7b02610/asset/images/medium/ie-2017-02610s_0013.gif

Wei, W., Bennett, C. A., Tanaka, R., Hou, G., & Klein, M. T. (2008). Detailed kinetic models for catalytic reforming. Fuel Processing Technology, 89(4), 344–349. https://doi.org/10.1016/j.fuproc.2007.11.014

Wei, W., Bennett, C. A., Tanaka, R., Hou, G., & Klein, M. T. (2008). Computer aided kinetic modeling with KMT and KME. Fuel Processing Technology, 89(4), 350–363. https://doi.org/10.1016/j.fuproc.2007.11.015

Yang, X., Wang, S., & He, Y. (2022). Review of catalytic reforming for hydrogen production in a membrane-assisted fluidized bed reactor. Renewable and Sustainable Energy Reviews, 154, 111832. https://doi.org/10.1016/j.rser.2021.111832

Zhorov, Y. M., Kartashev, Y. N., Panchenkov, G. M., & Tatarintseva, G. M. (1980). Mathematical model of platforming under stationary conditions with allowance for isomerization reactions. Chemistry and Technology of Fuels and Oils, 16(6), 297–300. https://doi.org/10.1007/BF00730570

Downloads

Published

2025-03-31

Issue

Section

Статьи

Similar Articles

You may also start an advanced similarity search for this article.