Электрохимическое поведение элементов Li/CFₓ при низкой температуре: роль состава электролита
Просмотры: 10 / Загрузок PDF: 1
DOI:
https://doi.org/10.32523/2616-6771-2025-153-4-11-19Ключевые слова:
Li/CFₓ элементы, состав электролита, импедансная спектроскопия, низкотемпературные характеристики, разрядная ёмкостьАннотация
Первичные литий-фторуглеродные (Li/CFₓ) элементы широко известны благодаря высокой теоретической плотности энергии, длительному сроку хранения и низкому саморазряду, что делает их востребованными в аэрокосмической, медицинской и военной отраслях. Однако при пониженных температурах их работа значительно ухудшается из-за роста межфазного сопротивления и снижения подвижности ионов лития. В данной работе исследовано влияние состава электролита на ионную проводимость и разрядные характеристики элементов Li/CFₓ при температуре –20 °C. Изучались односолевые и двухсолевые электролиты на основе солей LiDFOB, LiBF₄, LiPF₆ и LiClO₄ в различных растворителях (PC:DME, FEC:DME и PC:DME:EA), с добавками FEC и LiNO₃ и без них. Методом импедансной спектроскопии показано, что только двухсолевые системы и оптимальные добавки обеспечивают проводимость выше 5 мСм/см при отрицательных температурах. Наилучшие характеристики продемонстрировал электролит 0,4 M LiDFOB + 0,6 M LiBF₄ в PC:DME с удельной ёмкостью ~220–230 мА·ч/г. Полученные результаты согласуются с литературными данными и подчёркивают ключевую роль электролитной инженерии в разработке низкотемпературных первичных источников тока на основе Li/CFₓ.
Скачивания
Библиографические ссылки
Chen, Z., Wang, H., Jiang, J., & Li, Q. (2023). SEI-modifying additives for enhanced low-temperature performance of Li/CFₓ primary batteries. Journal of Power Sources, 554, 232185. https://doi.org/10.1016/j.jpowsour.2022.232185
Dose, W. M., & Donne, S. W. (2014). Optimising heat treatment environment and atmosphere of electrolytic manganese dioxide for primary Li/MnO₂ batteries. Journal of Power Sources, 247, 852–857. https://doi.org/10.1016/j.jpowsour.2013.08.142
Ge, W., Mao, H., Ling, Y., Min, F., Chen, J., Liu, L., Zhang, Y., & Song, S. (2023). Insight into the adsorption mechanism between chitosan and kaolinite surface by density functional theory calculation. Chemical Physics, 575, 112069. https://doi.org/10.1016/j.chemphys.2023.112069
Hagiwara, R., Yokoyama, C., & Ito, Y. (1980). Electrochemical reaction of graphite fluoride in nonaqueous lithium cell. Electrochimica Acta, 25(5), 579–585. https://doi.org/10.1016/0013-4686(80)85072-2
Kim, J., Lee, J., & Park, Y. (2021). Performance improvement of primary Li/CFₓ batteries by optimizing the composition of electrolyte additives. Electrochimica Acta, 380, 138202. https://doi.org/10.1016/j.electacta.2021.138202
Kulova, T. L., & Skundin, A. M. (2020). A critical review of electrode materials and electrolytes for low temperature lithium ion batteries. International Journal of Electrochemical Science, 15(9), 8638–8661. https://doi.org/10.20964/2020.09.50
Lee, D., Cho, M., Kim, J., & Lee, H. (2022). High-power Li/CFₓ battery enabled by BF₃-based electrolyte additive. Energy Storage Materials, 45, 189–197. https://doi.org/10.1016/j.ensm.2021.03.024
Li, Q., Xue, W., Sun, X., Yu, X., Li, H., & Chen, L. (2021). Gaseous electrolyte additive BF₃ for high-power Li/CFₓ primary batteries. Energy Storage Materials, 38, 482–488. https://doi.org/10.1016/j.ensm.2021.03.024
Lin, Y., Zhang, R., & Xu, K. (2021). Electrolyte design for low temperature lithium ion batteries. Energy Storage Materials, 36, 339–355. https://doi.org/10.1016/j.ensm.2021.01.015
Liu, Y., Zhang, R., Wang, J., & Wang, Y. (2022). Design principles for low-temperature electrolytes in lithium batteries. Energy Storage Materials, 50, 133–147. https://doi.org/10.1016/j.ensm.2022.06.003
Liang, H.-J., Su, M.-Y., Zhao, X.-X., Gu, Z.-Y., Yang, J.-L., Guo, W., Liu, Z.-M., Zhang, J.-P., & Wu, X.-L. (2023). Weakly solvating electrolytes enable ultralow-temperature (−80°C) and high-power CFₓ/Li primary batteries. Science China Chemistry, 66(7), 1982–1988. https://doi.org/10.1007/s11426-023-1638-0
Li, Z., Han, L., Kan, Y., Liao, C., & Hu, Y. (2024). Diphenylphosphoryl azide as a multifunctional flame-retardant electrolyte additive for lithium-ion batteries. Batteries, 10(4), 117. https://doi.org/10.3390/batteries10040117
Nagasubramanian, G., & Di Stefano, S. (2007). BF₃-based electrolyte additives to improve high rate capability of lithium batteries. Journal of Power Sources, 168(1), 123–130. https://doi.org/10.1016/j.jpowsour.2006.10.037
Park, J., Lee, H., & Kim, M. (2021). Synergistic effect of dual lithium salts on the interfacial stability and performance of primary Li/CFₓ cells. Journal of Materials Chemistry A, 9(4), 2025–2033. https://doi.org/10.1039/D0TA09988F
Shen, X., Shen, D., Zhu, J., & Duan, X. (2025). Erecting stable lithium metal batteries: A comprehensive review and future prospects. Advanced Functional Materials, 2504990. https://doi.org/10.1002/adfm.202504990
Smith, A. M., & Grey, C. P. (2015). Stabilization of lithium metal anodes using electrolyte additives. Journal of The Electrochemical Society, 162(10), A2026–A2031. https://doi.org/10.1149/2.0351510jes
Tan, S., Shadike, Z., Cai, X., Lin, R., Kludze, A., Borodin, O., Lucht, B. L., Wang, C., Hu, E., Xu, K., & Yang, X. Q. (2023). Review on low temperature electrolytes for lithium ion and lithium metal batteries. Electrochemical Energy Reviews, 6, 35. https://doi.org/10.1007/s41918-023-00199-1
Wang, H., Xu, K., & Chen, X. (2019). SEI formation and ionic conductivity in low-temperature electrolytes for lithium batteries. Electrochemistry Communications, 108, 106567. https://doi.org/10.1016/j.elecom.2019.106567
Wang, L., Zhao, Z., Zhang, M., & Wu, J. (2019). Fluorinated nanographite as a cathode material for lithium primary batteries. ChemElectroChem, 6(15), 3816–3822. https://doi.org/10.1002/celc.201900614
Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 104(10), 4303–4417. https://doi.org/10.1021/cr030203g
Xue, W., Qin, T., Li, Q., Zan, M., Yu, X., & Li, H. (2022). Exploiting the synergistic effects of multiple components with a uniform design method for developing low-temperature electrolytes. Energy Storage Materials, 50, 598–605. https://doi.org/10.1016/j.ensm.2022.06.003
Yin, Y., Holoubek, J., Liu, A., Sayahpour, B., Raghavendran, G., Cai, G., Han, B., Mayer, M., Schorr, N. B., Lambert, T. N., Harrison, K. L., Li, W., Chen, Z., & Meng, Y. S. (2022). Ultra-low temperature Li/CFₓ batteries enabled by fast-transport and anion-pairing liquefied gas electrolytes. arXiv. https://doi.org/10.48550/arXiv.2209.02409
Zhang, Y., Li, C., Yang, Y., & Xu, K. (2022). Low-temperature performance of lithium primary batteries: Materials and electrolyte strategies. Energy Storage Materials, 50, 230–243. https://doi.org/10.1016/j.ensm.2022.06.021
Zeng, L., Qiu, L., & Cheng, H. M. (2019). Towards the practical use of flexible lithium ion batteries. Energy Storage Materials, 23, 434–438. https://doi.org/10.1016/j.ensm.2019.04.019
Zhang, S., Foster, D., & Read, J. (2009). A low temperature electrolyte for primary Li/CFₓ batteries. Journal of Power Sources, 188(2), 532–537. https://doi.org/10.1016/j.jpowsour.2008.12.030
Zhang, X., Qiao, Y., Wu, C., & Li, H. (2023). Fluoroethylene carbonate as a multifunctional additive in lithium battery electrolytes. Batteries, 9(1), 78. https://doi.org/10.3390/batteries9010078
Zhang, Y., Jiang, J., Zhang, L., Tang, C., Tong, Z., Wang, X., Chen, Z., Li, M., & Zhuang, Q. (2023). BF₃-based electrolyte additives promote electrochemical reactions to boost the energy density of Li/CFₓ primary batteries. Electrochimica Acta, 470, 143311. https://doi.org/10.1016/j.electacta.2023.143311
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2025 A. Abdrakhmanova, N. Omarova, A. Sabitova, B. Kuderina (Author)

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.






