Analysis of the composition and properties of solid municipal waste in various cities of Kazakhstan


Views: 31 / PDF downloads: 16

Authors

DOI:

https://doi.org/10.32523/2616-6771-2025-152-3-11-42

Keywords:

waste-free production, waste recycling, household waste, pyrolysis, energy-efficient technologies, synthesis gas, thermal energy, methane, carbon dioxide, greenhouse gases

Abstract

According to the Bureau of National Statistics of the Republic of Kazakhstan, by the end of 2023, approximately 120 million tons of municipal solid waste (MSW) had been generated across over 3200 landfills in the country. The accumulation of both unsorted and sorted waste poses significant environmental risks, primarily through the generation of methane, a greenhouse gas that is 28 times more dangerous than carbon dioxide in contributing to the planet’s greenhouse effect over a century and 84 times more effective over a 20-year timeframe. The objective of this research is to examine the physicochemical composition, as well as the physical and thermal-chemical properties, of municipal solid waste from six cities in Kazakhstan: Astana, Almaty, Shymkent, Aktobe, Karaganda, and Ust-Kamenogorsk. Analysis of the physicochemical composition was conducted for both unsorted and sorted municipal solid waste from all cities, determining the total and analytical moisture content, ash content, and volatile matter, as well as the higher and lower calorific values. The efficiency factor of the manual sorting process in practice was 0.4–0.8. The results obtained enable the evaluation of technologies for the effective management of municipal solid waste and facilitate experimental investigations into semi-industrial pyrolysis, combustion, plasma processing, and composting facilities.

Downloads

Download data is not yet available.

References

Abbas, R.I., Flayeh, H.M. (2024). Aerobic Composting of Organic Waste, Alternative and an Efficient Solid Waste Management Solution. Asian J. Water Environ. Pollut. 21, 101–111. https://doi.org/10.3233/AJW240051

Abis, M., Bruno, M., Kuchta, K., Simon, F.-G., Grönholm, R., Hoppe, M., Fiore, S. (2020). Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe. Energies 13, 6412. https://doi.org/10.3390/en13236412

Bhatt, A.K., Bhatia, R.K., Thakur, S., Rana, N. (2018). Fuel from Waste: A Review on Scientific Solution for Waste Management and Environment Conservation. Prospects of Alternative Transportation Fuels 205–233. https://doi.org/10.1007/978-981-10-7518-6_10

Bhatt, K.P., Patel, S., Upadhyay, D.S., Patel, R.N. (2022). A critical review on solid waste treatment using plasma pyrolysis technology. Chem. Eng. Process. - Process Intensif. 177, 108989. https://doi.org/10.1016/j.cep.2022.108989

Bułkowska, K., Zielin´ska, M. (2024). Recovery of Biogas and Other Valuable Bioproducts from Livestock Blood Waste: A Review. Energies 17, 5873. https://doi.org/10.3390/en17235873

Cao, X., Williams, P.N., Zhan, Y., Coughlin, S.A., McGrath, J.W., Chin, J.P., Xu, Y. (2023). Municipal solid waste compost: Global trends and biogeochemical cycling. Soil Environ. Health 1, 100038. https://doi.org/10.1016/j.seh.2023.100038

Chatterjee, R., Sajjadi, B., Chen, W.-Y., Mattern, D.L., Hammer, N., Raman, V., Dorris, A. (2020). Effect of Pyrolysis Temperature on Physico-Chemical Properties and Acoustic-Based Amination of Biochar for Efficient CO2 Adsorption. Front. Energy Res. 8, 85. https://doi.org/10.3389/fenrg.2020.00085

Chen, B., Perumal, P., Illikainen, M., Ye, G. (2023). A review on the utilization of municipal solid waste incineration (MSWI) bottom ash as a mineral resource for construction materials. J. Build. Eng. 71, 106386. https://doi.org/10.1016/j.jobe.2023.106386

Chen, H., Song, X., Jian, Y. (2024). Performance Assessment of a Municipal Solid Waste Gasification and Power Generation System Integrated with Absorption Heat Pump Drying. Energies 17, 6034. https://doi.org/10.3390/en17236034

Chen, T., Ku, X., Li, T., Karlsson, B.S.A., Sjöblom, J., Ström, H. (2021). High-temperature pyrolysis modeling of a thermally thick biomass particle based on an MD-derived tar cracking model. Chem. Eng. J. 417, 127923. https://doi.org/10.1016/j.cej.2020.127923

Chalkidis, A., Jampaiah, D., Aryana, A., Wood, C.D., Hartley, P.G., Sabri, Y.M., Bhargava, S.K. (2020). Mercury-bearing wastes: Sources, policies and treatment technologies for mercury recovery and safe disposal. J. Environ. Manag. 270, 110945. https://doi.org/10.1016/j.jenvman.2020.110945

Dharnaik, A.S., Pramodini, P. (2024). A Review on Composting of Organic Solid Waste. In Proceedings of the 1st International Conference on Creative and Innovative Solutions in Civil Engineering, CISCE. IOP Conf. Ser. Earth Environ. Sci. 1326, 012130. https://doi.org/10.1088/1755-1315/1326/1/012130

Dronia, W., Połomka, J., Je˛drczak, A. (2024). Quantity and Material Composition of Foreign Bodies in Bio-Waste Collected in Towns from Single- and Multi-Family Housing and in Rural Areas. Energies 17, 4350. https://doi.org/10.3390/en17174350

Du, Y., Ju, T., Meng, Y., Lan, T., Han, S., Jiang, I. (2021). A review on municipal solid waste pyrolysis of different composition for gas production. Fuel Process. Technol. 224, 107026. https://doi.org/10.1016/j.fuproc.2021.107026

Glazyrin, S.A., Aibuldinov, Y.K., Kopishev, E.E., Zhumagulov, M.G., Bimurzina, Z.A. (2024). Analysis of the Composition and Properties of Municipal Solid Waste from Various Cities in Kazakhstan. Energies 17(24), 6426 https://doi.org/10.3390/en17246426

Glazyrin, S.A., Aidymbaeva, Z.A., Dostiyarov, A.M., Zhumagulov, M.G., Zlatov, N., Strefanovic´, V.P. (2020, April 23). Method for Cleaning Flue Gases of a Drum-Type Power Boiler. Patent of Republic of Kazakhstan. No. 5184 (Sposob ochistki dymovykh gazov barabannogo parovogo kotla In Russian).

Gonçalves, M.F.S., Petraconi Filho, G., Couto, A.A., da Silva Sobrinho, A.S., Miranda, F.S., Massi, M. (2022). Evaluation of thermal plasma process for treatment disposal of solid radioactive waste. J. Environ. Manag. 311, 114895. https://doi.org/10.1016/j.jenvman.2022.1148

Karunasena, G., Gajanayake, A., Wijeratne, W.M., Pabasara, U., Milne, N., Udawatta, N., Perera, S., Crimston, A., Aliviano, P. (2023). Liquid waste management in the construction sector: A systematic literature review. Int. J. Constr. Manag. 24, 86–96. https://doi.org/10.1080/15623599.2023.2211416

Karungamye, P. (2024). Energy recovery from solid waste valorisation: Environmental and economic potential for developing countries. Sci. Afr. 26, e02402. https://doi.org/10.1016/j.sciaf.2024.e02402

Kasin´ski, S., De˛bowski, M. (2024). Municipal Solid Waste as a Renewable Energy Source: Advances in Thermochemical Conversion Technologies and Environmental Impacts. Energies 17, 4704. https://doi.org/10.3390/en17184704

Kuo, W.-C., Lasek, J., Słowik, K., Głód, K., Jagustyn, B., Li, Y.-H., Cygan, A. (2019). Low-temperature pre-treatment of municipal solid waste for efficient application in combustion systems. Energy Convers. Manag. 196, 525–535. https://doi.org/10.1016/j.enconman.2019.06.007

Li, J., An, D., Shi, Y., Bai, R., Du, S. (2024). A Review of the Physical and Chemical Characteristics and Energy-Recovery Potential of Municipal Solid Waste in China. Energies 17, 491. https://doi.org/10.3390/en17020491

Long, Y., Hu, Y., Wang, H., Jia, J., Huang, H., Shen, D., Gu, F. (2024). Effective disposal of hazardous waste from non-ferrous waste recycling through thermal treatment. J. Clean. Prod. 434, 140004. https://doi.org/10.1016/j.jclepro.2023.140004

Nasrullah, M., Vainikka, P., Hannula, J., Hurme, M., Karki, J. (2015). Mass, energy and material balances of SRF production process. Part 3: Solid recovered fuel produced from municipal solid waste. Waste Manag. Res. 33, 146–156. https://doi.org/10.1177/0734242X14563375

Nobre, C., Sen, A., Durão, L., Miranda, I., Pereira, H., Gonçalves, M. (2023). Low-temperature pyrolysis products of waste cork and lignocellulosic biomass: Product characterization. Biomass Convers. Biorefinery 13, 2267–2277. https://doi.org/10.1007/s13399-021-01300-8

Nukusheva, A., Rustembekova, D., Abdizhami, A., Au, T., Kozhantayeva, Z. (2023). Regulatory Obstacles in Municipal Solid Waste Management in Kazakhstan in Comparison with the EU. Sustainability 15, 1034. https://doi.org/10.3390/su15021034

Park, D.K., Kim, J.-H., Kim, H.-S., Kim, J.-H., Ryu, J.-H. (2023). Possibility Study in CO2 Free Hydrogen Production Using Dodecane (C12H26) from Plasma Reaction. Energies 16, 1589. https://doi.org/10.3390/en16041589

Patil, Y.R., Dakwale, V.A., Ralegaonkar, R.V. (2024). Recycling Construction and Demolition Waste in the Sector of Construction. Adv. Civ. Eng. 6234010. https://doi.org/10.1155/2024/6234010

Pech-Rodríguez, W.J., Meléndez-González, P.C., Hernández-López, J.M., Suarez-Velázquez, G.G., Sarabia-Castillo, C.R., Calles-Arriaga, C.A. (2024). Pharmaceutical Wastewater and Sludge Valorization: A Review on Innovative Strategies for Energy Recovery and Waste Treatment. Energies 17, 5043. https://doi.org/10.3390/en17205043

Provisional Statement on the State of the Global Climate in 2018; World Meteorological Organization (WMO): Geneva, Switzerland, 2018, 47 p.

Puri, L., Hu, T., Naterer, G. (2024). Critical review of the role of ash content and composition in biomass pyrolysis. Front. Fuels 2, 1378361. https://doi.org/10.3389/ffuel.2024.1378361

Qi, Y.-P., He, P.-J., Lan, D.-Y., Xian, H.-Y., Lü, F., Zhang, H. (2022). Rapid determination of moisture content of multi-source solid waste using ATR-FTIR and multiple machine learning methods. Waste Manag. 153, 20–30. https://doi.org/10.1016/j.wasman.2022.08.014

Ratomski, P., Hawrot-Paw, M., Koniuszy, A., Golimowski, W., Kwas´nica, A., Marcinkowski, D. (2023). Indicators of Engine Performance Powered by a Biofuel Blend Produced from Microalgal Biomass: A Step towards the Decarbonization of Transport. Energies 16, 5376. https://doi.org/10.3390/en16145376

Rodrigues, J.A.P., Pinto, N.A.B.T., Leite, L.A., dos, S.B., Pereira, A.O. (2024). Production of Bio-Oil via Pyrolysis of Banana Peel and Tire Waste for Energy Utilization. Energies 17, 6149. https://doi.org/10.3390/en17236149

Serikova, A., Baidakov, A., Syrlybayeva, N. (2020). The organization of municipal solid waste collection, disposal and recycling in Kazakhstan. E3S Web Conf. 159, 01010. https://doi.org/10.1051/e3sconf/202015901010

Sikder, S., Toha, M., Rahman, M.M. (2024). Municipal Solid Waste Incineration: An Incredible Method for Reducing Pressures on Landfills. Technical Landfills and Waste Management 7, 169–188. https://doi.org/10.1007/978-3-031-55665-4_7

Soares, C. (2015). Chapter 7-Gas Turbine Fuel Systems and Fuels. In Gas Turbines, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 317–411. https://doi.org/10.1016/B978-0-12-410461-7.00007-9

Sobieraj, K., Stegenta-Da˛browska, S., Koziel, J.A., Białowiec, A. (2021). Modeling of CO Accumulation in the Headspace of the Bioreactor during Organic Waste Composting. Energies 14, 1367. https://doi.org/10.3390/en14051367

The Law of the Republic of Kazakhstan. The Environmental Code of the Republic of Kazakhstan Dated 2 January 2021 No. 400-VI LRK. (Including the Changes from 2 October 2023); Akorda: Astana, Kazakhstan, 2023, 446 p. Available online: https://www.gov.kz/memleket/entities/cerc/documents/details/113729?lang=kk

Torrubia, J., Torres, C., Valero, A., Valero, A., Parvez, A.M., Sajjad, M., Paz, F.G. (2024). Applying Circular Thermoeconomics for Sustainable Metal Recovery in PCB Recycling. Energies 17, 4973. https://doi.org/10.3390/en17194973

Traven, L. (2023). Sustainable energy generation from municipal solid waste: A brief overview of existing technologies. Case Stud. Chem. Environ. Eng. 8, 100491. https://doi.org/10.1016/j.cscee.2023.100491

Wikira, N., Bazooyar, B., Darabkhani, H.G. (2024). Modelling and Analysis of Low and Medium-Temperature Pyrolysis of Plastics in a Fluidized Bed Reactor for Energy Recovery. Energies 17, 6204. https://doi.org/10.3390/en17236204

Williams, P.T. Waste Treatment and Disposal; John Wiley & Sons Ltd.: Chichester, UK, 2005, 388 p.

World Meteorological Organization (WMO). State of the Climate 2024. Update for COP29; WMO: Geneva, Switzerland, 2024, 12 p. Available online: https://library.wmo.int/records/item/69075-state-of-the-climate-2024 (accessed on 11 November 2024).

Xu, M.-X., Di, J.-Y., Wu, Y.-C., Meng, X.-X., Ji, H., Jiang, H., Li, J.-H.. Lu, Q. (2023). Insights into the pyrolysis mechanisms of epoxy resin polymers based on the combination of experiments and ReaxFF-MD simulation. Chem. Eng. J. 473, 145404. https://doi.org/10.1016/j.cej.2023.145404

Yanamandra, K., Pinisetty, D., Daoud, A., Gupta, N. (2022). Recycling of Li-Ion and Lead Acid Batteries: A Review. J. Indian Inst. Sci. 102, 281–295. https://doi.org/10.1007/s41745-021-00269-7

Young, G.C. Municipal Solid Waste to Energy Conversion Processes; Economic, Technical, and Renewable Comparisons; John Wiley & Sons: Hoboken, NJ, USA, 2010, 398 p.

Zajaс, M., Skrajna, T. (2024). Effect of Composted Organic Waste on Miscanthus sinensis Andersson Energy Value. Energies 17, 2532. https://doi.org/10.3390/en17112532

Published

2025-09-30

Issue

Section

Chemistry

Most read articles by the same author(s)