N-Ацилалкилпиразолдардың синтезі және олардың құрылымының цитоуыттылық қасиеттеріне әсері


Қаралымдар: 28 / PDF жүктеулері: 16

Авторлар

  • Н. Алжаппарова Академик Е.А. Бөкетов атындағы Қарағанды университеті, Қарағанды, Қазақстан https://orcid.org/0000-0002-0359-2350
  • С. Паньшина Академик Е.А. Бөкетов атындағы Қарағанды университеті, Қарағанды, Қазақстан https://orcid.org/0000-0001-6824-2645
  • М. Ибраев Академик Е.А. Бөкетов атындағы Қарағанды университеті, Қарағанды, Қазақстан https://orcid.org/0000-0003-0798-5562
  • А. Жумина Академик Е.А. Бөкетов атындағы Қарағанды университеті, Қарағанды, Қазақстан https://orcid.org/0000-0002-0904-4726
  • А. Оразбай Академик Е.А. Бөкетов атындағы Қарағанды университеті, Қарағанды, Қазақстан https://orcid.org/0009-0008-4469-7563

DOI:

https://doi.org/10.32523/2616-6771-2025-152-3-43-57

Кілт сөздер:

пиразол, N-ацилалкилдену, α-бромкетондар, ЯМР, РҚТ, цитоуыттылық, Artemia Salina

Аңдатпа

Пиразолдар және олардың туындылары сақина құрылымында екі байланысқан азот атомы бар π-электронды ароматты гетероциклді қосылыстар. Пиразол туындылары биологиялық белсенді қасиеттерінің кең және алуан түрлілігіне байланысты ғалымдардың назарын аударады. Пиразол және оның гомологтары молекулалардың қышқылдық-негіздік қасиеттеріне ықпал ететін NH-тобы протонының миграциясы нәтижесінде пайда болатын прототропты таутомериямен сипатталады.
Бұл зерттеуде пиразолдардың қасиеттерін ескере отырып, алифатты және ароматты α-бромидкетондардың пиразолмен және оның 3,5-диметил-және 3,5-дифенил-туындыларымен өзара әрекеттесу реакцияларының бірқатар N-(ацилалкил)пиразолдары бөлме температурасында аралық тұздар мен бромсутектің бөлінуі үшін K2CO3 негізінің қатысуымен ацетондағы екі сатылы «Оne-pot» реакциясы арқылы синтезделді. Зерттелетін қосылыстардың ішінде 65–92% шығымы бар жаңа, бұрын сипатталмаған пинаколонпиразолдар және 38–91% шығымы бар фенацилпиразолдар синтезделді. N-ацилалкилдену реакциясының ықтимал жолдары қарастырылады.
Алынған өнімдердің құрылымдары ЯМР, ИҚ, РҚТ және ГХ-Масс-спектрометриямен сипатталды. РҚТ нәтижелері бойынша N-(ацилалкил)пиразолдар кристалдарының түзілуіне карбонил топтары қатысатын жазық конъюгацияланған π-жүйелер болып табылады.
Artemia Salina шаян тәрізділеріне қатысты зерттелетін N-ацилалкилпиразолдардың цитоуыттылығының көрінісі анықталды және уыттылық орынбасарлардың түріне байланысты екені көрсетілген. Сонымен, фенацилпиразолдың цитоуыттылығы пинаколонпиразолдың цитоуыттылығынан 6 есе көп, ал фенацилпиразолдардың цитоуыттылығы бензол сақинасындағы орынбасарларға байланысты өзгереді және бензол ядросында акцепторлар болған кезде төмендейді. Цитоуыттылықты зерттеу нәтижелері оларды одан кейінгі модификация кезінде дәрілік заттарды жасау үшін қолданылуы мүмкін.

Downloads

Download data is not yet available.

Әдебиеттер тізімі

Al-Aizari, F.A., Ansar, M.H., Karrouchi, K., Mabkhot, Y., Ramli, Y., Taoufik, J. (2018). Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 23, 1–86. https://doi.org/10.3390/molecules23010134

Alan, R.K. (1997). Comprehensive heterocyclic chemistry. Pyrazoles. In H. Richard (Eds.). John Wiley & Sons, Ltd, New York.

Ansari, A., Ali, A., Asif, M. (2017). Biologically active pyrazole derivatives: A Review. New Journal of Chemistry. 41. 16‒41. https://doi.org/10.1039/C6NJ03181A

Babaev, E.V., Panshina, S.Yu., Alzhapparova, N.A., Ibraev, M.K., Usenova, M.S. (2025). 3a,6a-Diazapentalenes (pyrazolo[1,2-a]pyrazoles). Russian Chemical Bulletin. 74, 1958–1975. https://doi.org/10.1007/s11172-025-4681-8

Baker, J. (1941). Mechanism and kinetics of aromatic side-chain substitution. Interpretation of reaction data by the method of relative energy levels. Transactions of the Faraday Society 37, 643. https://doi.org/10.1039/TF9413700632

Balasubrahmanya, K.S., Kiran, B.M., Ding-Yah, Y. (2023). 4-Chloro-3-nitrocoumarin as a precursor for synthesis of 2-arylchromeno[3,4-b]pyrrol-4(3H)-ones: a case of nitro group directed reductive coupling. Org. Biomol. Chem. 29, 5964–5969. https://doi.org/10.1039/d3ob00917c

Calenda, S., Catarzi, D., Varano, F., Vigiani, E., Volpini, R., Lambertucci, C., Spinaci, A., Trevisan, L., Grieco, I., Federico, S., Spalluto, G., Novello, G., Salmaso, V., Stefano, M.S., Colotta, V. (2024). Structural Investigations on 2-Amidobenzimidazole Derivatives as New Inhibitors of Protein Kinase CK1 Delta. Pharmaceuticals (Base l) 17, 468, 1‒31. https://doi.org/10.3390/ph17040468

Castillo, J.M., Portilla, J. (2019). Recent advances in the synthesis of new pyrazole derivatives. Italian Society of Chemistry, 194–223. https://doi.org/10.17374/targets.2019.22.194

Cour, T., Rasmussen, S.E., Hopf, H., Waisvisz, J.M., Hoeven, M.G., Carl-Gunnar, S. (1973). The structure of pyrazole, C3H4N2, at 295K and 108K as determined by X-Ray diffraction. Acta Chemica Scandinavica 27, 1845–1854. https://doi.org/10.3891/acta.chem.scand.27-1845

Dago, C.D., Maux, P.L., Roisnel, T., Brigaudeau, C., Bekro, Y.A., Mignen, O., Bazureau, J.P. (2018). Preliminary Structure-Activity Relationship (SAR) of a Novel Series of Pyrazole SKF-96365 Analogues as Potential Store-Operated Calcium Entry (SOCE) Inhibitors. Journal of Molecular Sciences 19, 2–24. https://doi.org/10.3390/ijms19030856

Dhiman, Sh., Nandwana, N.K., Saini, H.K., Kumar, D., Rangan, K., Robertson, K.N., Jhad, M., Kumara, A. (2018). Nickel-Catalyzed Tandem Knoevenagel Condensation and Intramolecular Direct Arylation: Synthesis of Pyrazolo[5,1-a]-isoquinoline Derivatives. Advanced Synthesis & Catalysis 360, 1973–1983. https://doi.org/10.1002/adsc.201701519

Elguero, J., Jagerovic, N. (1995). Solid state structure of NH-pyrazoles not easily amenable to crystal structure determinations: The case of 3(5)-phenyl-5(3)-methylpyrazole and 3,5-diphenyl-4-methylpyrazole. Journal of Heterocyclic Chemistry 32, 451–456. https://doi.org/10.1002/jhet.5570320211

Favilla, M., Macchia, L., Gallo, A., Altomare, C. (2006). Toxicity assessment of metabolites of fungal biocontrol agents using two different (Artemia salina and Daphnia magna) invertebrate bioassays. Food and Chemical Toxicology 44, 1922–1931. https://doi.org/10.1016/j.fct.2006.06.024

Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y.N., Al-aizari, A.F., Ansar, M. (2018). Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 23, 1–86. https://doi.org/10.3390/molecules23010134

Katritzky, A.R., Wang, M., Zhang, S., Voronkov, M.V., Steel, P.J. (2001). Regioselective synthesis of polysubstituted pyrazoles and isoxazoles. The Journal of Organic Chemistry 66, 6787–6791. https://doi.org/10.1021/jo0101407

Kester, D.R., Duedall, I.W., Connors, D.N., Pytkowicz, R.M. (1967). Preparation of Artificial Seawater Archived. Limnology and Oceanography 12, 176–179. https://doi.org/10.4319/lo.1967.12.1.0176

Lei, J., Ding, Y., Tang, D.Y., Li, H., Xu, Z., Chen, Z. (2022). Efficient Synthesis of Pyrazoles by pH Dependent Isomerization of Enaminodiones. Asian Journal of Organic Chemistry 12, 1‒5. https://doi.org/10.1002/ajoc.202200448

Libralato, G., Prato, E., Migliore, L., Cicero, A.M., Manfra, L. (2016). A review of toxicity testing protocols and endpoints with Artemia spp. Ecological Indicators 69, 35–49. https://doi.org/10.1016/j.ecolind.2016.04.017

Martin, M.A.P., Fiss, G.F., Frizzo, C.P., Rosa, F.A., Bonacorso, H.G., Zanatta, N. (2010). Highly regioselective synthesis of novel 1,4'-bipyrazoles. Journal of the Brazilian Chemical Society 21, 240‒247. https://doi.org/10.1590/S0103-50532010000200008

Meyer, B.N., Ferrighi, N.R., Putnam, J.E., Jacobsen, L.B., Nichols, D.E., Laughlin, J.L. (1982). Brine shrimp: A convenient general bioassay for active plant constituents. Journal of Medicinal Plants Research 45, 31–34. https://doi.org/10.1055/s-2007-971236

Ozdemir, Z., Karakurt, A., Cali, U., Gunal, S., Isik, S., Sahin, Z.S., Dalkara S. (2015). Synthesis, anticonvulsant and antimicrobial activities of some new [1-(2-naphthyl)-2-(pyrazol-1-yl)ethanone]oxime ethers. Medicinal Chemistry 11, 41‒49. https://doi.org/10.2174/1573406410666140428150358

Perrin, D.D. (1965). Dissociation Constants of Organic Bases in Aqueous Solution, Supplement 1972, Butterworths, London. https://doi.org/10.1002/352760183X.ch5b

Rague Schleyer, P., Маеrкеr, C., Dransfeld, A., Jiao, H., Eikema Hommes, N.J.R. (1996). Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe. J. Am. Chem. Soc. 118, 6317–6318. https://doi.org/10.1021/ja960582d

Salerno, L., Modica, M.N., Romeo, G., Pittalà V, Siracusa, M.A., Amato, M.E., Acquaviva, R., Di Giacomo, C., Sorrenti, V. (2012). Novel inhibitors of nitric oxide synthase with antioxidant properties. European Journal of Medicinal Chemistry 49, 118‒126. https://doi.org/10.1016/j.ejmech.2012.01.002

Schmidt, A., Dreger, A. (2011). Recent Advances in the Chemistry of Pyrazoles. Properties, Biological Activities, and Syntheses. Current Organic Chemistry 15, 1423–1463. https://doi.org/10.2174/138527211795378263

Secrieru, A., Michael, P.O., Cristiano, M.L.S. (2020). Revisiting the Structure and Chemistry of 3(5)-Substituted Pyrazoles. Molecules 25, 42. 1–28. https://doi.org/10.3390/molecules25010042

Sharma, T., Kumar, R., Chandra S., Sindhu, J., Singh, J., Singh, B., Mehta, S.K., Umar, A.S., Singh Saini, T., Kumar, V., Kataria, R. (2020). Synthesis, structural and pharmacological exploration of 2-(3,5-dimethyl-1H-pyrazol-1-yl)-acetophenone oximes and their silver complexes. Polyhedron 195, 114972. https://doi.org/10.1016/j.poly.2020.114972

Sharma, T., Kumar, R., Sahoo, S.C., Sindhu, J., Singh, J., Singh, B., Mehta, S.K., Umar, A., Saini, T.S., Kumar, V., Kataria, R. (2021). Synthesis, structural and pharmacological exploration of 2-(3, 5-dimethyl-1H-pyrazol-1-yl)-acetophenone oximes and their silver complexes. Polyhedron 195, 114972. https://doi.org/10.1016/j.poly.2020.114972

Sikora, M., Katrusiak, A. (2013). Pressure-Controlled Neutral–Ionic Transition and Disordering of NH…N Hydrogen Bonds in Pyrazole. The Journal of Physical Chemistry C. 117, 10661–10668. https://doi.org/10.1021/jp401389v

Solis, P.N., Wright, C.W., Anderson, M.M., Gupta, M.P., Philhipson, J.D. (1993). A microwell Cytotoxicity Assay using Artemia salina (Brine Shrimp). Planta Med. 59, 250–252. https://doi.org/10.1055/s-2006-959661

Solomons, T.W., Calderazzo, J., Fowler, F.W. (1965). The Diazapentalene System. 1-Benzoyl-2-phenylpyrazolo[1,2-a]pyrazole Derivatives. Journal of the American Chemical Society 87, 528–531. https://doi.org/10.1021/ja01081a023

Stanovnik, B., Svete, J. (2003) Product Class 1: Pyrazoles. ChemInform 34, 215–225. https://doi.org/10.1002/chin.200346258

Suleimenov, E.M. (2009). Components of Peusedanum morisonii and their antimicrobial and cytotoxic activity. Chemistry of Natural Compounds 45, 710–711. https://doi.org/10.1007/s10600-009-9423-x

Unnava, R., Deka, M.J., Saikia, A.K. (2016). Synthesis of Highly Substituted 4-Iodopyrazole N-oxides and Pyrazoles from Propargylamines. Asian Journal of Organic Chemistry 5, 528–536. https://doi.org/10.1002/ajoc.201600002

Zhang, Y., Wu, C., Zhang, N., Fan, R., Ye, Y., Xu, J. (2023). Recent Advances in the Development of Pyrazole Derivatives as Anticancer Agents. International Journal of Molecular Sciences 24, 12724. https://doi.org/10.3390/ijms241612724

Жүктеулер

Жарияланды

2025-09-30

Журналдың саны

Бөлім

Химия

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.