Analysis of fire dynamics in the Naurzum Nature Reserve and adjacent areas using satellite data
Views: 13 / PDF downloads: 2
DOI:
https://doi.org/10.32523/2616-6771-2025-153-4-73-89Keywords:
remote sensing, satellite research, wildfires, Naurzum Reserve, adjacent territories, Kostanay RegionAbstract
Wildfires are one of the major drivers of short-term and long-term ecosystem change, including within protected natural areas. The number and intensity of fires have increased significantly due to land use expansion, climate change, and the socio-economic conditions of local populations. The main objective of this study was a long-term analysis (2000–2024) of fire frequency and burned area within the boundaries of the Naurzum State Nature Reserve (2000–2025) and in the adjacent territories. The importance of this research is highlighted by the high conservation status of the Naurzum State Nature Reserve as a part of the UNESCO World Heritage Site “Saryarka – Steppe and Lakes of Northern Kazakhstan.” Modern satellite image analysis technologies and databases (Landsat 8 and Sentinel-2) were used to conduct the study. Thermal hotspots, observation dates, and burned areas were taken into account. For the first time, it was demonstrated that during the period from 2000 to 2024, a total of 29 wildfires occurred, with a combined burned area of 833,589 ha, of which 236,300 ha were within the reserve’s boundaries. To minimize the consequences of wildfires, preventive measures are proposed through continuous monitoring and assessment of valuable natural heritage areas using modern Earth remote sensing technologies. The results of the study include the number and extent of burned areas that have influenced the biodiversity of the reserve over an extended period.
Downloads
References
Alvarez, A. J., Lecina-Diaz, E., Batllori, A., Duane, L., Brotons, L., & Retana, J. (2024). Spatiotemporal patterns and drivers of extreme fire severity in Spain for the period 1985–2018. Agricultural and Forest Meteorology, 358, 110185. https://doi.org/10.1016/j.agrformet.2024.110185
Bragina, T. M. (2009). Naurzum ecological network (history of study, current status, and long-term conservation of biological diversity in the region of representation of a UNESCO World Natural Heritage site (Naurzumskaya ekologicheskaya set’ (istoriya izucheniya, sovremennoe sostoyanie i dolgosrochnoe sohranenie biologicheskogo raznoobraziya regiona predstavitel’stva prirodnogo ob”ekta Vsemirnogo naslediya YUNESKO) in Russian). Kostanay printing (Kostanaj poligrafiya). ISBN 978-601-7109-10-3.
Bragina, T. M., Nowak, A., Vanselow, K. A., & Wagner, V. (2018). Grasslands of Kazakhstan and Middle Asia: The ecology, conservation and use of a vast and globally important area. In V. R. Squires, J. Dengler, H. Feng, & L. Hua (Eds.), Grasslands of the world (pp. 139–167). CRC Press. https://www.crcpress.com/link/link/p/book/9781498796262
Bragina, T. M. (2021). Composition and structure of soil invertebrate communities (mesofauna) of the Naurzum Nature Reserve (Sostav i struktura soobshchestv pochvennyh bespozvonochnyh (mezofauna) Naurzumskogo zapovednika in Russian). Kostanay printing (Kostanaj poligrafiya). ISBN 978-601-7640-54-5.
CBD (Convention on Biological Diversity). (2022). Kunming-Montreal global biodiversity framework. https://www.cbd.int/doc/c/e6d3/cd1d/daf663719a03902a9b116c34/cop-15-l-25-en.pdf
Chepashev, D., Nurakynov, S., Sharma, D., Sydyk, N., & Kabdulova, G. (2025). Mapping fire hazard potential in Kazakhstan. International Journal of Wildland Fire, 34(9), WF24232. https://doi.org/10.1071/WF24232
Duane, A., Castellnou, M., & Brotons, L. (2021). Towards a comprehensive look at global drivers. Climatic Change, 165, 43. https://doi.org/10.1007/s10584-021-03066-4
Galaktionova, L. V., & Vasilchenko, A. V. (2019). Sustainability of soils to fires. Nature Conservation Research, 4(Suppl. 2), 98–103. https://doi.org/10.24189/ncr.2019.041
He, T., Lamont, B. B., & Pausas, J. G. (2019). Fire as a key driver of Earth’s biodiversity. Biological Reviews, 94(6), 1983–2010. https://doi.org/10.1111/brv.12544
Jolly, C. J., Dickman, C. R., Doherty, T. S., van Eeden, L. M., Geary, W. L., Legge, S. M., Woinarski, J. C. Z., & Nimmo, D. G. (2022). Animal mortality during fire. Global Change Biology, 28(6), 2053–2065. https://doi.org/10.1111/gcb.16044
Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, Ch., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santin, C., Kolden, C., Doerr, S. H., & Le Quere, C. (2022). Global and regional trends and drivers of fire under climate change. Reviews of Geophysics, 60(2), e2020RG000726. https://doi.org/10.1029/2020RG000726
Kabdulova, G., Kabzhanova, G., Baktybekov, K., Aimbetov, A., & Aligazhiyeva, L. (2019). Satellite remote sensing for monitoring of the forest resources of Kazakhstan. Proceedings of SPIE - The International Society for Optical Engineering. Conference paper. https://doi.org/10.1117/12.2533563
Kabdulova, G., Meirmanova, T., Aimbetov, A., Kabzhanova, G., & Baktybekov, K. (2020). GIS capabilities in monitoring of forest logging and assessment of burned areas based on Earth remote sensing data. Proceedings of SPIE - The International Society for Optical Engineering. Conference paper. https://doi.org/10.1117/12.2570965
Kamp, J., Bhagwat, T., Hölzel, N., & Smelansky, I. (2025). Collapse and recovery of livestock systems. Philosophical Transactions of the Royal Society B, 380(1874). https://doi.org/10.1098/rstb.2024.0062
Kamp, J., Koshkin, M. A., Bragina, T. M., Katzner, T. E., Milner-Gulland, E. J., Schreiber, D., Sheldon, R., Shmalenko, A., Smelansky, I., Terraube, J., & Urazaliev, R. (2016). Persistent and novel threats. Biodiversity and Conservation, 25(12), 2521–2541. https://doi.org/10.1007/s10531-016-1083-0
Keeley, J. E., & Pausas, J. G. (2022). Evolutionary ecology of fire. Annual Review of Ecology, Evolution, and Systematics, 53, 203–225. https://doi.org/10.1146/annurev-ecolsys-102320-095612
Leys, B. A., Marlon, J. R., Umbanhowar, C., & Vannière, B. (2018). Global fire history of grassland biomes. Ecology and Evolution, 8(17), 8831–8852. https://doi.org/10.1002/ece3.4394
Naurzum State Nature Reserve (Naurzumsky Zapovednik in Russian). (2016). Scientific activity (Nauchnaya deyatel'nost'). https://naurzum.kz/ru/o-zapovednike/nauchnaya-deyatelnost
Pavleychik, V. M., Chibilev, A. A., & Padalko, Y. A. (2022). Pyrological situation in the steppes of northern Eurasia. Doklady Earth Sciences, 505(1), 591–597. https://doi.org/10.1134/S1028334X22080141
Rachkovskaya, E. I., & Bragina, T. M. (2012). Steppes of Kazakhstan. In M. Werger & M. van Staalduinen (Eds.), Eurasian steppes (pp. 103–148). Springer. https://doi.org/10.1007/978-94-007-3886-7_3
Resco de Dios, V., Cunill Camprubí, À., Campos-Arceiz, A., Clarke, H., He, Y., Zveushe, O. K., Domènech, R., Ying, H., & Yao, Y. (2025). Protected areas show substantial. Fire, 8, 405. https://doi.org/10.3390/fire8100405
Sayedi, S. S., Abbott, B. W., Vanniere, B., Leys, B., Colombaroli, D., Romera, G. G., Stowinski, M., Aleman, J. C., Blarquez, O., Feurdean, A., Brown, K., Aakala, T., Alenius, T., Allen, K., Andric, M., Bergeron, Y., Biagioni, S., Bradshaw, R., Bremond, L., Brisset, E., Brooks, J., Brugger, S. O., Brussel, Th., Cadd, H., Cagliero, E., Carcaillet, Ch., Carter, V., Catry, F. X., Champreux, A., Chaste, E., Chavardes, R. D., Chipman, M., Conedera, M., Connor, S., Constantine, M., Mustaphi, C. C., Dabengwa, A. N., Daniels, W., De Boer, E., Dietze, E., Estrany, J., Fernandes, P., Finsinger, W., Flantua, S. G. A., Fox-Hughes, P., Gaboriau, D. M., Gayo, E. M., Girardin, M. P., Glenn, J., Gluckler, R., Gonzalez-Arango, C., Groves, M., Hamilton, D. S., Hamilton, R. J., Hantson, S., Hapsari, K. A., Hardiman, M., Hawthorne, D., Hoffman, K., Inoue, J., Karp, A. T., Krebs, P., Kulkarni, Ch., Kuosmanen, N., Lacourse, T., Ledru, M.-P., Lestienne, M., Long, C., Lopez-Saez, J. A., Loughlin, N., Niklasson, M., Madrigal, J., Maezumi, S. Y., Marcisz, K., Mariani, M., McWethy, D., Meyer, G., Molinari, Ch., Montoya, E., Mooney, S., Morales-Molino, C., Morris, J., Moss, P., Oliveras, I., Pereira, J. M., Pezzatti, G. B., Pickarski, N., Pini, R., Rehn, E., Remy, C. C., Revelles, J., Rius, D., Robin, V., Ruan, Y., Rudaya, N., Russell-Smith, J., Seppa, H., Shumilovskikh, L., Sommers, W. T., Tavsanoglu, C., Umbanhowar, Ch., Urquiaga, E., Urrego, D., Vachula, R. S., Wallenius, T., You, Ch., & Daniau, A.-L. (2024). Assessing changes in global fire regimes. Fire Ecology, 20(1), 18. https://doi.org/10.1186/s42408-023-00237-9
Shi, K., & Touge, Y. (2022). Characterization of global wildfire burned area spatiotemporal patterns. Scientific Reports, 12(1), 644. https://doi.org/10.1038/s41598-021-04726-2
Suresh Babu, K. V., Singh, S., Kabdulova, G., Kabzhanova, G., & Baktybekov, G. R. (2024). Burned area mapping based on KazEOSat-1. Environmental Sciences Proceedings, 29(1), 82. https://doi.org/10.3390/ECRS2023-16841
Suresh Babu, K. V., Singh, S., Kabdulova, G., & Kabzhanova, G. (2025). A novel framework for fire risk assessment in Kazakhstan: integrating machine learning and remote sensing. Front. For. Glob. Change, Sec. Fire and Forests, 8. https://doi.org/10.3389/ffgc.2025.1680856
Downloads
Published
Issue
Section
License
Copyright (c) 2025 T. Bragina, G. Kabdulova, D. Chepashev, G. Zhusupova, A. Shinguzhinov, R. Zhilkibaev, Ye. Maximkina (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






