From Observations to Analysis: Field Research as the First Stage of Studying Riverbed Changes


Views: 40 / PDF downloads: 15

Authors

DOI:

https://doi.org/10.32523/2616-6771-2025-152-3-104-121

Keywords:

Yesil River, field research methods, channel and erosion processes, coastline erosion, river erosion, remote sensing

Abstract

The article presents 2024-2025 field study results on channel processes of Yesil (Ishim) River within Akmola region. The main goal was to identify areas with channel deformations on satellite images and confirm them with field data. In total, 17 key areas were identified on the studied section of the riverbed over 500 km long, 5 representative ones were examined in detail. For the first time, morphological features were analysed for this territory and types of channel processes were determined according to hydromorphological theory developed by the State Hydrological Institute of RF. Field research revealed the most erosion-prone areas and provided detailed descriptions of the river coastline and engineering structures. Results include qualitative characteristics (channel morphology, process types) and quantitative data (height, width, length of eroded banks, road surface parameters). A riverbed process with increased erosion hazard was identified, posing risks to structures and settlements. Remote sensing and field data comparison demonstrated high efficiency of an integrated approach for clarifying scale and nature of channel changes. The obtained results form the basis for developing a comprehensive methodology for monitoring river coastlines and will be used in preparation of a dissertation on using remote sensing data to identify and monitor riverbed processes.

Downloads

Download data is not yet available.

References

Akiyanova, F. Z., Frolova, N. L., Shaymerdenova, A. M., Karakulov, Y. M., & Olezhko, A. B. (2019). Impact of anthropogenic transformation of riverbeds on the water resources of arid regions (The Yesil and Nura rivers case, North Kazakhstan). Series Geology and Technical Sciences, 6(438), 197–207. https://doi.org/10.32014/2019.2518-170X.171

Aleksova, B., Milevski, I., Dragićević, S., & Lukić, T. (2024). GIS-based integrated multi-hazard vulnerability assessment in Makedonska Kamenica Municipality, North Macedonia. Atmosphere, 15(7), 774. https://doi.org/10.3390/atmos15070774

Ballanti, L., Byrd, K., Woo, I., & Ellings, C. (2017). Remote sensing for wetland mapping and historical change detection at the Nisqually River Delta. Sustainability, 9(11), 1919. https://doi.org/10.3390/su9111919

Boothroyd, R. J., Williams, R. D., Hoey, T. B., Barrett, B., & Prasojo, O. A. (2021). Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change. WIREs Water, 8(4), e21496. https://doi.org/10.1002/wat2.1496

Chalov, R. S. (2011). Ruslovedenie: teoriya, geografiya, praktika. Tom 2. Morfodinamika rechnykh rusel [Fluvial studies: theory, geography, practice. Vol. 2: Morphodynamics of river channels]. Moscow: Krasand. https://www.rfbr.ru/view_book/1948/

Chalov, R. S., Kurakova, A. A., Golubtsov, G. B., & Zavadskiy, A. S. (2023). Transformaciya rechnyh rusel v processe ih samorazvitiyai vliyaniya estestvennyh i antropogennyh izmenenij faktorov ruslovyh processov [Transformation of river channels in the process of their self-development and the influence of natural and anthropogenic changes in channel process factors]. Izvestiya Russkogo geograficheskogo obshchestva [News of the Russian Geographical Society], 155(2), 88-108. https://doi.org/10.31857/S0869607123020039

Dragićević, S., Pripužić, M., Živković, N., Novković, I., Kostadinov, S., Langović, M., Milojković, B., & Čvorović, Z. (2017). Spatial and temporal variability of bank erosion during the period 1930–2016: Case study–Kolubara River Basin (Serbia). Water, 9(10), 748. https://doi.org/10.3390/w9100748

Esekej, K. (2024, April, 25). Budut li oblagorazhivat' «vodopad» v Astane [Will the "waterfall" in Astana be improved?]. Kazinform. https://www.inform.kz/ru/budut-li-oblagorazhivat-vodopad-v-astane-8b8887

Gharti, S., Poudel, P., Silwal, R., & others. (2025). GIS and remote sensing based assessment of West Rapti River channel migration in Nepal. Discover Water, 5, 5. https://doi.org/10.1007/s43832-024-00183-w

Gonzales-Inca, C., Calle, M., Croghan, D., Torabi Haghighi, A., Marttila, H., Silander, J., & Alho, P. (2022). Geospatial Artificial Intelligence (GeoAI) in the integrated hydrological and fluvial systems modeling: Review of current applications and trends. Water, 14(14), 2211. https://doi.org/10.3390/w14142211

Kondrat'ev, N. E., Popov, I. V., & Snishchenko, B. F. (1982). Osnovy gidromorfologicheskoy teorii ruslovogo protsessa [Fundamentals of the hydromorphological theory of the channel process]. Leningrad: Gidrometeoizdat.

Kuznetsova, Y., Golosov, V., Tsyplenkov, A., & Ivanova, N. (2019). Quantifying channel bank erosion of a small mountain river in Russian wet subtropics using erosion pins. Proceedings of the International Association of Hydrological Sciences, 381, 79–84. https://doi.org/10.5194/piahs-381-79-2019

Mandal, S. (2017). Assessing the instability and shifting character of the river bank Ganga in Manikchak Diara of Malda district, West Bengal using bank erosion hazard index (BEHI). European Journal of Geography, 8(4), 25–32.

Medeu, A. R. (Ed.). (2010). Nacional'nyj atlas Respubliki Kazahstan. Tom 1: Prirodnye usloviya i resursy [National Atlas of the Republic of Kazakhstan. Vol. 1: Natural conditions and resources]. Institut geografii [Institute of Geography].

Mussina, A., Tursyngali, M., Duskayev, K., Rodrigo-Ilarri, J., Rodrigo-Clavero, M.-E., & Abdullayeva, A. (2025). Forecasting channel morphodynamics in the Ulken Almaty River (Ile Alatau, Kazakhstan). Water, 17(13), 2029. https://doi.org/10.3390/w17132029

Nath, A., & Ghosh, S. (2024). Geo-spatial analyses of meandering rivers, assessing past and future impacts on bank landforms and LULC changes. Water Policy, 26(12), 1234–1260. https://doi.org/10.2166/wp.2024.062

Ongdas, N., Akiyanova, F., Karakulov, Y., Muratbayeva, A., & Zinabdin, N. (2020). Application of HEC-RAS (2D) for flood hazard maps generation for Yesil (Ishim) River in Kazakhstan. Water, 12(10), 2672. https://doi.org/10.3390/w12102672

Snishchenko, D. V., & Snishchenko, B. F. (1985). Rekomendatsii po ispol'zovaniyu aerokosmicheskoy informatsii pri izuchenii ruslovogo protsessa [Recommendations on the Use of Aerospace Information in the Study of Channel Processes]. Gidrometeoizdat. https://meganorm.ru/Index2/1/4294815/4294815153.htm

Sultana, M., Hoque, M. A., & Pradhan, B. (2025). Assessing Meghna Riverbank dynamics and morphological changes in Bangladesh using geospatial techniques. Applied Geomatics, 17, 147–161. https://doi.org/10.1007/s12518-025-00620-y

Taukenov, T., Dzhanaleeva, K., & Yerzhanova, Z. (2018). Methods of improving the efficiency of monitoring of channel deformations of mountain rivers near built-in settlements: On the example of the Buktyrma River. Geodesy and Cartography, 44(1), 28–35. https://doi.org/10.3846/gac.2018.260

Tobón-Marín, A., & Cañón Barriga, J. (2020). Analysis of changes in rivers planforms using Google Earth Engine. International Journal of Remote Sensing, 41(22), 8654–8681. https://doi.org/10.1080/01431161.2020.1792575

Veshkurtseva, T. M. (2008). Vliyanie hozyajstvennoj deyatel'nosti na ruslovye processy reki Ishim [Impact of economic activity on channel processes of the Ishim River]. Vestnik Tyumenskogo gosudarstvennogo universiteta. Ekologiya i prirodopol'zovanie [Bulletin of Tyumen State University. Ecology and Nature Management], 4, 143–153. https://elib.utmn.ru/jspui/bitstream/ru-tsu/14650/1/143-153_%D0%92%D0%B5%D1%88%D0%BA%D1%83%D1%80%D1%86%D0%B5%D0%B2%D0%B0.pdf

Vorob’ev, A. Yu., & Kadyrov, A. S. (2020). Polevye issledovaniya otstupaniya beregov rusla r. Oki v 2014–2018 gg. s pomoshch'yu metoda prostyh reperov [Field studies of the retreat of the Oka River channel banks in 2014–2018 using the simple benchmarks method]. Geograficheskij vestnik [Geographical Bulletin], 3(54), 30–45. https://doi.org/10.17072/2079-7877-2020-3-30-45

Wang, J., Wang, F., Wang, S., Zhou, Y., Ji, J., Wang, Z., Zhao, Q., & Liu, L. (2023). Flood monitoring in the middle and lower basin of the Yangtze River using Google Earth Engine and machine learning methods. ISPRS International Journal of Geo-Information, 12(3), 129. https://doi.org/10.3390/ijgi12030129

Wu, X., Feng, X., Fu, B., Yin, S., & He, C. (2023). Managing erosion and deposition to stabilize a silt-laden river. Science of The Total Environment, 881, 163444. https://doi.org/10.1016/j.scitotenv.2023.163444

Yusicheva, K., Aliev, R. (2022, August, 8). Bereg reki Esil' stremitel'no obrushaetsya v Petropavlovske. [The bank of the Yesil River is rapidly collapsing in Petropavlovsk]. Khabar news. https://khabar.kz/ru/news/obshchestvo/142014-bereg-reki-esil-stremitelno-obrushaetsya-v-petropavlovske

Published

2025-09-30

Issue

Section

Geography

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.