Use of UAV when studying avalanche areas in the East Kazakhstan region


Views: 173 / PDF downloads: 43

Authors

DOI:

https://doi.org/10.32523/2616-6771-2025-151-2-154-168

Keywords:

remote sensing, UAV, DEM, 3D modeling, terrain, snow avalanches, avalanche hazard, data processing, GIS, East Kazakhstan region

Abstract

When studying avalanche hazards in the mountainous regions of the East Kazakhstan Region (EKR), modern remote sensing technologies – unmanned aerial vehicles (UAVs) – were employed. The most common factors influencing avalanche formation include geomorphological (relief, slope aspect, and other parameters), geobotanical (landscape type), and meteorological factors (type, amount, and intensity of precipitation, wind speed, thaw conditions). This article primarily focuses on the geomorphological factor. UAVs were utilized for detailed terrain studies, recognizing relief as one of the critical factors in avalanche formation. Landscape geomorphology significantly affects snowpack stability and the occurrence of avalanches. Morphometric terrain characteristics, such as slope angle, elevation, and slope aspect, largely determine avalanche formation conditions. Snow avalanches in EKR represent a common natural phenomenon, posing risks to the local population and causing infrastructure damage in the region. Detailed digital elevation models (DEMs) of the study area are crucial for avalanche research. These DEMs can be derived from UAV-based remote sensing data, enabling accurate assessments of relief characteristics, including elevation, slopes, and slope aspects. One of the most widely used avalanche protection methods is forecasting avalanche hazards. The more detailed and precise terrain information is available, the more accurate such forecasts can be. The study resulted in the creation of high-precision DEMs, digital terrain models (DTMs), orthophotoplans, and 3D avalanche accumulation zone models. These outputs significantly improved the reliability of identifying priority sites for installing avalanche monitoring systems. Consequently, the results contribute to optimizing the placement of monitoring systems and enhancing the accuracy of avalanche hazard forecasts.

Downloads

Download data is not yet available.

Author Biography

G. Kabdulova, The “Institute of Ionosphere”, Almaty, Kazakhstan

Chief Researcher of the Laboratory of Space and Geoinformation Technologies

References

Agisoft. (2023). User's Guide [Rukovodstvo pol'zovatelya in Russian] Agisoft Metashape: Professional Edition (Ver. 2.0). https://www.agisoft.com/pdf/metashape-pro_2_0_ru.pdf

Akkuratov, V.N., Krasnosel'skij, E.B., Itkin, V.A. (1967). On calculating the maximum range of snow avalanches [O raschyote maksimal'noj dal'nosti vybrosa snezhnyh lavin in Russian]. Snow and Avalanches of Khibiny [Sneg i laviny Hibin], 349–356. В DJI Terra: User manual (Version 4.0, p. 49).

ALSI-ASIA-SYSTEM. (2024). Dron DJI Matrice 300 RTK. https://www.drone.com.kz/products/drony/matrice_300_rtk/

ALSI-ASIA-SYSTEM. (2024). Dron DJI Matrice 350 RTK. https://www.drone.com.kz/products/drony/dron_dji_matrice_350_rtk/

Andres-Anaya, P., et al. (2023). A new methodology for estimating surface albedo in heterogeneous areas from satellite imagery. Applied Sciences 14(1), 75. https://doi.org/10.3390/app14010075

Baker, D. G., et al. (1992). Air temperature and radiation depressions associated with a snow cover. Journal of Applied Meteorology 31(3), 247–254.

Baktybekov, K.S., Kabzhanova, G.R., Kabdulova, G.A., Kezheneva, A. (2019). Ispol'zovanie CMR kak elementa cifrovogo pochvennogo kartografirovaniya territorii Severnogo Kazahstana [The name of CMR as an element of the figures of soil mapping of the territories of Northern Kazakhstan]. Vestnik ZKGU [Herald of ZKGU] 4(76), 525–532. https://doi.org/10.32523/2616-6771-2020-132-3-87-95

Drone Laboratory BR Lab. (2022). Industrial Quadcopter [Promyshlennyj kvadrokopter in Russian] DJI Matrice 350 RTK. https://brlab.ru/equipment/enterprise-drones/promyshlennyy-kvadrokopter-dji-matrice-350-rtk/

Kumar, S., Srivastava, P.K., Snehmani. (2017). GIS-based MCDA–AHP modelling for avalanche susceptibility mapping of Nubra valley region, Indian Himalaya. Geocarto International, 32(11), 1254–1267. https://doi.org/10.1080/10106049.2016.1206626

Marshall, S., Oglesby, R.J. (1994). An improved snow hydrology for GCMs. Part 1: Snow cover fraction, albedo, grain size, and age. Climate Dynamics, 10, 21–37. https://doi.org/10.1007/BF00210334

McClung, D. M. (2016). Avalanche character and fatalities in the high mountains of Asia. Annals of Glaciology, 57(71), 114–118. https://doi.org/10.3189/2016AoG71A075

Ministry of Ecology [Ministerstvo ekologii]. (2024). National plan and report on the state of the environment and on the use of natural resources of the Republic of Kazakhstan for 2023 [Nacional'nyj doklad o sostoyanii okruzhayushchej sredy i ob ispol'zovanii prirodnyh resursov Respubliki Kazahstan za 2023 god in Russian]. [PDF file].

NASA. (2020). SRTM – Shuttle Radar Topography Mission. https://www.earthdata.nasa.gov/data/instruments/srtm

Picard, G., et al. (2020). Spectral albedo measurements over snow-covered slopes: Theory and slope effect corrections. The Cryosphere, 14(5), 1497–1517. https://doi.org/10.5194/tc-14-1497-2020

Ramtvedt, E.N., Næsset, E. (2023). A simple slope correction of horizontally measured albedo in sloping terrain. Agricultural and Forest Meteorology 339, 109547. https://doi.org/10.1016/j.agrformet.2023.109547

Seidel, F.C., et al. (2016). Case study of spatial and temporal variability of snow cover, grain size, albedo and radiative forcing in the Sierra Nevada and Rocky Mountain snowpack derived from imaging spectroscopy. The Cryosphere 10(3), 1229–1244. https://doi.org/10.5194/tc-10-1229-2016

Selcuk, L. (2013). An avalanche hazard model for Bitlis Province, Turkey, using GIS-based multicriteria decision analysis. Turkish Journal of Earth Sciences 22(4), 523–535. https://doi.org/10.3906/yer-1201-10

Stroeve, J., Nolin, A., Steffen, K. (1997). Comparison of AVHRR-derived and in situ surface albedo over the Greenland ice sheet. Remote Sensing of Environment 62(3), 262–276. https://doi.org/10.1016/S0034-4257(97)00093-3

Varol, N. (2022). Avalanche susceptibility mapping with the use of frequency ratio, fuzzy and classical analytical hierarchy process for Uzungol area, Turkey. Cold Regions Science and Technology 194, 103439. https://doi.org/10.1016/j.coldregions.2021.103439

Villa Almaty. (2024). Dron DJI Matrice 300 RTK. https://mavic.kz/product/dron-dji-matrice-300-rtk/

Vojtkovskij, K.F. (1989). Avalanche Science: A study guide [Lavinovedenie: Uchebnoe posobie in Russian]. http://mirknig.com/knigi/estesstv_nauki/1181786519-lavinovedenie.htm

Washington, W.M., Meehl, G.A. (1986). General circulation model CO₂ sensitivity experiments: Snow-sea ice albedo parameterizations and globally averaged surface air temperature. Climatic Change, 8(3), 231–241. https://doi.org/10.1007/bf00161596

Yang, J., He, Q., Liu, Y. (2022). Winter-spring prediction of snow avalanche susceptibility using optimisation multi-source heterogeneous factors in the Western Tianshan Mountains, China. Remote Sensing 14(6), 1340. https://doi.org/10.3390/rs14061340

Zhdanov, V.V. (2021). Fundamentals of avalanche safety [Osnovy lavinnoj bezopasnosti in Russian]. Almaty. ISBN 978-601-7150-97-6

Zhuravleva, T.B., Kohanovskij, A.A. (2010). Vliyanie gorizontal'noj neodnorodnosti na al'bedo i pogloshchatel'nuyu sposobnost' snezhnogo pokrova [The effect of horizontal heterogeneity on the health and absorption capacity of snow cover]. Meteorology and hydrology [Meteorologiya i gidrologiya] 9, 17–25. https://rucont.ru/efd/144212

Published

2025-06-30

Issue

Section

Geography

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.