Determination of elemental content of cyanobacteria Spirulina platensis and Nostoc linckia using neutron activation analysis


Views: 12 / PDF downloads: 1

Authors

DOI:

https://doi.org/10.32523/2616-6771-2025-153-4-20-29

Keywords:

neutron activation analysis, Spirulina platensis, Nostoc linckia, elemental content

Abstract

The cyanobacteria Spirulina platensis and Nostoc linckia are high-nutrition products with broad potential for use in the food and pharmaceutical industries, as well as in bioremediation. However, their high capacity for metal bioaccumulation necessitates the monitoring of their elemental content. Multi-element neutron activation analysis at the IBR-2 reactor of FLNP JINR in Dubna, Russia, was used to study the elemental composition of two strains of Spirulina platensis and cyanobacterium Nostoc linckia. The content of 24 elements was determined in each cyanobacterial strain. The content of toxic metals in the microbial biomass did not exceed the limits for daily intake set by the World Health Organization.

Downloads

Download data is not yet available.

References

Ahmed, N., Zhang, B., Bozdar, B., Chachar, S., Rai, M., Li, J., Li, Y., Hayat, F., Chachar, Z. & Tu, P. (2023). The power of magnesium: unlocking the potential for increased yield, quality, and stress tolerance of horticultural crops. Frontiers in Plant Science, 14, 1285512. https://doi.org/10.3389/FPLS.2023.1285512

Al-Dhabi, N. A. (2013). Heavy metal analysis in commercial Spirulina products for human consumption. Saudi Journal of Biological Sciences, 20(4), 383. https://doi.org/10.1016/J.SJBS.2013.04.006

Assidi, M., Buhmeida, A. & Budowle, B. (2022). Medicine and health of 21st Century: Not just a high biotech-driven solution. NPJ Genomic Medicine, 7(1), 67. https://doi.org/10.1038/S41525-022-00336-7

Beard, J. L. (2001). Iron Biology in Immune Function, Muscle Metabolism and Neuronal Functioning. The Journal of Nutrition, 131(2), 568S-580S. https://doi.org/10.1093/JN/131.2.568S

Bourais, I., Elmarrkechy, S., Machich, O., Nassif, A., Taha, D. & Bouyahya, A. (2022). Biological and pharmaceutical activities of polysaccharides. Plant Polysaccharides as Pharmaceutical Excipients, 575–607. https://doi.org/10.1016/B978-0-323-90780-4.00025-5

Bouyahya, A., Bakrim, S., Chamkhi, I., Taha, D., El Omari, N., El Mneyiy, N., El Hachlafi, N., El-Shazly, M., Khalid, A., Abdalla, A. N., Goh, K. W., Ming, L. C., Goh, B. H. & Aanniz, T. (2024). Bioactive substances of cyanobacteria and microalgae: Sources, metabolism, and anticancer mechanism insights. Biomedicine & Pharmacotherapy, 170, 115989. https://doi.org/10.1016/J.BIOPHA.2023.115989

Campanella, L., Crescentini, G., Avino, P. & Moauro, A. (1998). Determination of macrominerals and trace elements in the alga Spirulina platensis. Analysis, 26(5), 210–214. https://doi.org/10.1051/ANALUSIS:1998136

Cepoi, L., Chiriac, T., Rudi, L., Djur, S., Zosim, L., Bulimaga, V., Batir, L., Elenciuc, D. & Rudic, V. (2017). Spirulina as a Raw Material for Products Containing Trace Elements. Recent Advances in Trace Elements, 403–420. https://doi.org/10.1002/9781119133780.CH19

Cepoi, L., Zinicovscaia, I., Rudi, L., Chiriac, T., Djur, S., Yushin, N. & Grozdov, D. (2022). Assessment of Metal Accumulation by Arthrospira platensis and Its Adaptation to Iterative Action of Nickel Mono-and Polymetallic Synthetic Effluents. Microorganisms, 10(5). https://doi.org/10.3390/MICROORGANISMS10051041

Cepoi, L., Zinicovscaia, I., Rudi, L., Chiriac, T., Miscu, V., Djur, S., Strelkova, L. & Grozdov, D. (2020). Spirulina platensis as renewable accumulator for heavy metals accumulation from multi-element synthetic effluents. Environmental Science and Pollution Research International, 27(25), 31793–31811. https://doi.org/10.1007/S11356-020-09447-Z

Cepoi, L., Zinicovscaia, I., Valuta, A., Codreanu, L., Rudi, L., Chiriac, T., Yushin, N., Grozdov, D. & Peshkova, A. (2021). Bioremediation Capacity of Edaphic Cyanobacteria Nostoc linckia for Chromium in Association with Other Heavy-Metals-Contaminated Soils. Environments, 9(1), 1. https://doi.org/10.3390/ENVIRONMENTS9010001

Cepoi, L., Zinicovscaia, I., Valuta, A., Codreanu, L., Rudi, L., Chiriac, T., Yushin, N., Grozdov, D. & Peshkova, A. (2022). Peculiarities of the Edaphic Cyanobacterium Nostoc linckia Culture Response and Heavy Metal Accumulation from Copper-Containing Multimetal Systems. Toxics, 10(3), 113. https://doi.org/10.3390/TOXICS10030113

Chasapis, C. T., Ntoupa, P. S. A., Spiliopoulou, C. A. & Stefanidou, M. E. (2020). Recent aspects of the effects of zinc on human health. Archives of Toxicology, 94(5), 1443–1460. https://doi.org/10.1007/S00204-020-02702-9

Chasapis, C. T., Spiliopoulou, C. A., Loutsidou, A. C. & Stefanidou, M. E. (2012). Zinc and human health: an update. Archives of Toxicology, 86(4), 521–534. https://doi.org/10.1007/S00204-011-0775-1

Chromium - Health Professional Fact Sheet. (n.d.). Retrieved October 2, 2025, from https://ods.od.nih.gov/factsheets/Chromium-HealthProfessional/

Galhano, V., Santos, H., Oliveira, M. M., Gomes-Laranjo, J. & Peixoto, F. (2011). Changes in fatty acid profile and antioxidant systems in a Nostoc muscorum strain exposed to the herbicide bentazon. Process Biochemistry, 46(11), 2152–2162. https://doi.org/10.1016/J.PROCBIO.2011.08.015

Gao, K. (1998). Chinese studies on the edible blue-green alga, Nostoc flagelliforme: A review. Journal of Applied Phycology, 10(1), 37–49. https://doi.org/10.1023/A:1008014424247

Harris, E. D. (2012). Cofactors: Inorganic. Encyclopedia of Human Nutrition, 1–4, 357–365. https://doi.org/10.1016/B978-0-12-375083-9.00057-X

Kumar, M., Kulshreshtha, J. & Singh, G. P. (2011). Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature. Brazilian Journal of Microbiology, 42(3), 1128. https://doi.org/10.1590/S1517-838220110003000034

Ledin, M. (2000). Accumulation of metals by microorganisms — processes and importance for soil systems. Earth-Science Reviews, 51(1–4), 1–31. https://doi.org/10.1016/S0012-8252(00)00008-8

Lieu, P. T., Heiskala, M., Peterson, P. A. & Yang, Y. (2001). The roles of iron in health and disease. Molecular Aspects of Medicine, 22(1–2), 1–87. https://doi.org/10.1016/S0098-2997(00)00006-6

Mary Leema, J. T., Kirubagaran, R., Vinithkumar, N. V., Dheenan, P. S. & Karthikayulu, S. (2010). High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresource Technology, 101(23), 9221–9227. https://doi.org/10.1016/J.BIORTECH.2010.06.120

Mondal, A., Dey, I., Mukherjee, A., Ismail, A., Satpati, G. G., Banerjee, S., Paul, S., Paul, S. & Pal, R. (2024). Spirulina biomass loaded with iron nanoparticles: A novel biofertilizer for the growth and enrichment of iron content in rice plants. Biocatalysis and Agricultural Biotechnology, 61, 103387. https://doi.org/10.1016/J.BCAB.2024.103387

Mosulishvili, L. M., Frontasyeva, M. V., Pavlov, S. S., Belokobylsky, A. I., Kirkesali, E. I. & Khizanishvili, A. I. (2004). Epithermal neutron activation analysis of Spirulina platensis biomass and extracted C-phycocianin and DNA. Journal of Radioanalytical and Nuclear Chemistry, 259(1), 41–45. https://doi.org/10.1023/B:JRNC.0000015803.67211.0E/METRICS

Office of Dietary Supplements (ODS). (n.d.). Retrieved October 2, 2025, from https://ods.od.nih.gov/

Ortega-Calvo, J. J., Mazuelos, C., Hermosin, B. & Saiz-Jimenez, C. (1993). Chemical composition of Spirulina and eukaryotic algae food products marketed in Spain. Journal of Applied Phycology, 5(4), 425–435. https://doi.org/10.1007/BF02182735

Podgórska-Kryszczuk, I. (2024). Spirulina - An Invaluable Source of Macro- and Micronutrients with Broad Biological Activity and Application Potential. Molecules, 29(22), 5387. https://doi.org/10.3390/MOLECULES29225387

Ramírez Calderón, O. A., Abdeldayem, O. M., Pugazhendhi, A. & Rene, E. R. (2020). Current Updates and Perspectives of Biosorption Technology: an Alternative for the Removal of Heavy Metals from Wastewater. Current Pollution Reports, 6(1), 8–27. https://doi.org/10.1007/S40726-020-00135-7

Rangabhashiyam, S. & Balasubramanian, P. (2019). Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae. Bioresource Technology Reports, 5, 261–279. https://doi.org/10.1016/J.BITEB.2018.07.009

Raoof, B., Kaushik, B. D. & Prasanna, R. (2006). Formulation of a low-cost medium for mass production of Spirulina. Biomass and Bioenergy, 30(6), 537–542. https://doi.org/10.1016/J.BIOMBIOE.2005.09.006

Salman, J. M., Grmasha, R. A., Stenger-Kovács, C., Lengyel, E., Al-sareji, O. J., AL-Cheban, A. M. A. A. & Meiczinger, M. (2023). Influence of magnesium concentrations on the biomass and biochemical variations in the freshwater algae, Chlorella vulgaris. Heliyon, 9(1), e13072. https://doi.org/10.1016/J.HELIYON.2023.E13072

Santos-Beneit, F. (2024). What is the role of microbial biotechnology and genetic engineering in medicine? MicrobiologyOpen, 13(2), e1406. https://doi.org/10.1002/MBO3.1406

Shalaby, E. A., Atta, M. B., Sleem, I. A., Mohamed, M. A., Lightfoot, D. A. & El-Shemy, H. A. (2019). Cytotoxicity, Antioxidant and Antiviral Potential of Aqueous Extract from Nostoc muscorum Cultivated in Various Inexpensive Media. Waste and Biomass Valorization, 10(5), 1419–1431. https://doi.org/10.1007/S12649-017-0188-3

Sochacka, M., Kózka, B., Kurek, E. & Giebułtowicz, J. (2025). Spirulina and Chlorella Dietary Supplements - Are They a Source Solely of Valuable Nutrients? International Journal of Molecular Sciences 26(21), 10468. https://doi.org/10.3390/IJMS262110468

Soni, R. A., Sudhakar, K. & Rana, R. S. (2017). Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157–171. https://doi.org/10.1016/J.TIFS.2017.09.010

Spínola, M. P., Mendes, A. R. & Prates, J. A. M. (2024). Chemical Composition, Bioactivities, and Applications of Spirulina (Limnospira platensis) in Food, Feed, and Medicine. Foods, 13(22), 3656. https://doi.org/10.3390/FOODS13223656

Thuan, N. H., An, T. T., Shrestha, A., Canh, N. X., Sohng, J. K. & Dhakal, D. (2019). Recent Advances in Exploration and Biotechnological Production of Bioactive Compounds in Three Cyanobacterial Genera: Nostoc, Lyngbya, and Microcystis. Frontiers in Chemistry, 7, 604. https://doi.org/10.3389/FCHEM.2019.00604

Trace elements in human nutrition and health. (1996). 343.

Vijayakumar, S. & Menakha, M. (2015). Pharmaceutical applications of cyanobacteria - A review. Journal of Acute Medicine, 5(1), 15–23. https://doi.org/10.1016/J.JACME.2015.02.004

Yang, Y., Yang, H., Feng, X., Song, Q., Cui, J., Hou, Y., Fu, X. & Pei, Y. (2024). Selenium-Containing Protein from Selenium-Enriched Spirulina platensis Relieves Osteoporosis by Inhibiting Inflammatory Response, Osteoblast Inactivation, and Osteoclastogenesis. Journal of Food Biochemistry. https://doi.org/10.1155/2024/3873909

Zinicovscaia, I., Cepoi, L., Chiriac, T., Ana Culicov, O., Frontasyeva, M., Pavlov, S., Kirkesali, E., Akshintsev, A. & Rodlovskaya, E. (2016). Spirulina platensis as biosorbent of chromium and nickel from industrial effluents. Desalination and Water Treatment, 57(24), 11103–11110. https://doi.org/10.1080/19443994.2015.1042061

Zinicovscaia, I., Cepoi, L., Chiriac, T., Yushin, N. & Vergel, K. (2018). Study of selected metals biosorption by Arthrospira platensis using neutron activation analysis. Desalination and Water Treatment, 108, 119–124. https://doi.org/10.5004/DWT.2018.21940

Żymańczyk-Duda, E., Samson, S. O., Brzezińska-Rodak, M. & Klimek-Ochab, M. (2022). Versatile Applications of Cyanobacteria in Biotechnology. Microorganisms, 10(12), 2318. https://doi.org/10.3390/MICROORGANISMS10122318

Downloads

Published

2025-12-24

Issue

Section

Chemistry

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.