Radiation and peroxide methods for composite preparation based on polypropylene: a review and comparative analysis


Views: 752 / PDF downloads: 85

Authors

DOI:

https://doi.org/10.32523/2616-6771-2025-151-2-103-129

Keywords:

polypropylene, polymer crosslinking, radiation crosslinking, peroxide crosslinking, composites, polymer materials, physicochemical properties, polymer modification, structural changes, industrial applications

Abstract

This article presents a comprehensive review and comparative analysis of two key methods for modifying polypropylene composites—radiation and peroxide crosslinking. Polypropylene, with its high physicochemical properties, is widely used in construction, automotive, electrical engineering, and other industries. However, the need to improve its thermal resistance, strength, and durability necessitates additional modification of its macromolecular structure. The crosslinking methods under consideration enable the formation of a three-dimensional network structure, which significantly enhances the performance characteristics of the material. The article analyzes the mechanisms of network structure formation, the influence of process parameters on crosslinking efficiency, and provides a comparison of the resulting composites in terms of various physical, mechanical, and thermal properties. The relevance of choosing a method based on the specific end-use application is substantiated, emphasizing the potential for further research in the field of polymer engineering. Potential application areas for the modified composites are discussed, including their use in high-tech industries where enhanced strength and resistance to environmental factors are required. Additionally, the ecological and economic aspects of implementing crosslinked polypropylene in industry are addressed. Particular attention is given to issues of technology scale-up and integration of developed solutions into existing manufacturing processes. At the same time, challenges related to the control of the degree of crosslinking and the need for standardization of the resulting materials are analyzed. In conclusion, the importance of selecting the optimal crosslinking method to achieve the desired properties of polypropylene composites is highlighted, as it can significantly influence their market competitiveness. Examples of successful industrial implementation of these technologies are provided.

Downloads

Download data is not yet available.

References

Abdukarimova, S.A., Bozorova, N.H., Turaev, J.R. (2022). Osobennosti modifikacii polipropilena. [Features of polypropylene modification]. Universum: Tekhnicheskie Nauki: Elektronnyi Nauchnyi Zhurnal [Universum: Technical Sciences: Electronic Scientific Journal] 1(94), 80–84. https://doi.org/10.32743/UniTech.2022.94.1.12949

Aguado, J., Serrano, D.P., Escola, J.M., Garagorri, E. (2002). Catalytic conversion of low density polyethylene using a continuous screw kiln reactor. Catalysis Today 75, 257-275. https://doi.org/10.1016/S0920 5861(02)00077 9

Ajorloo, M., Ghodrat, M., Kang, W.H. (2021). Incorporation of recycled polypropylene and fly ash in polypropylene-based composites for automotive applications. Journal of Polymers and the Environment 29, 1298–1309. https://doi.org/10.1007/s10924-020-01961-y

Akbarian, D., Hamedi, H., Damirchi, B., Yilmaz, D.E., Penrod, K., Woodward, W.H., Moore, J., Lanagan, M.T. (2019). Atomistic-scale insights into the crosslinking of polyethylene induced by peroxides. Polymer 183, 121089. https://doi.org/10.1016/j.polymer.2019.121089

Alfred, M.L., Lawrence, H.E., Wilfred, F.B. (1965). Improvements in and relating to the manufacture of particulate expandable polymers and to the manufacture of expanded polymers therefrom (GB Patent No. 1062307). United Kingdom).

Alsabri, A., Tahir, F., Al-Ghamdi, S.G. (2023). Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Materials Today: Proceedings 56, 2245–2251. https://doi.org/10.1016/j.matpr.2021.11.574

Alshammari, B.A., Alsuhybani, M.S., Almushaikeh, A.M., Alotaibi, B.M., Alenad, A.M., Alqahtani, N.B., Alharbi, A.G. (2021). Comprehensive review of the properties and modifications of carbon fiber-reinforced thermoplastic composites. Polymers 13(15), 2474. https://doi.org/10.3390/polym13152474

Avaev, A.A., Osipov, J.R. (2018). Matematicheskaja model' teploperenosa v processe termicheskoj vulkanizacii pokrytija iz jelastomera na metallicheskoj plastine. [Mathematical model of heat transfer during thermal vulcanization of an elastomer coating on a metal plate]. Vestnik Cherepoveckogo Gosudarstvennogo Universiteta [Bulletin of Cherepovets State University] 1(82), 14–19. https://doi.org/10.23859/1994-0637-2018-1-82-1

Banu, R.D., Balaji, R., Arunachalam, R., Elumalai, P. (2024). Synthesis, characterization, thermal and mechanical behavior of polypropylene hybrid composites embedded with CaCO₃ and graphene nanoplatelets (GNPs) for structural applications. AIMS Materials Science 11(3), 463–494. https://doi.org/10.3934/matersci.2024024

Bazunova, M.V., Smirnov, A.V., Sadritdinov, A.R. (2021). Poluchenie i svojstva polimernyh kompozitov na osnove polipropilena i oksida aljuminija. [Preparation and properties of polymer composites based on polypropylene and aluminum oxide]. Vestnik Bashkirskogo Universiteta [Bulletin of Bashkir University] 26(1), 79–83. https://doi.org/10.33184/bulletin-bsu-2021.1.13

Buev, S.A. (2021). Analiz parametrov kabelja s izoljaciej iz sshitogo polijetilena, podverzhennogo teplovomu stareniju. [Analysis of cable parameters with cross-linked polyethylene insulation subjected to thermal aging]. Vestnik MGTU [Bulletin of the Moscow State Technical University] 24(4), 341–349. https://doi.org/10.21443/1560-9278-2021-24-4-341-349

Carlson, D., Nie, L., Narayan, R., Dubois, P. (1999). Maleation of polylactide by reactive extrusion. Journal of Applied Polymer Science 72(4), 477–485. https://doi.org/10.1002/(SICI)1097-4628(19990425)72:4

Chaudhary, B.I., Peterson, T.H. (2010). Thermoreversible crosslinking of polyethylene enabled by free radical initiated functionalization with urethane nitroxyls. Polymer 51(1), 153–163. https://doi.org/10.1016/j.polymer.2009.11.039

Cui, S., Luo, X., Li, Y. (2017). Synthesis and properties of polyurethane wood adhesives derived from crude glycerol-based polyols. International Journal of Adhesion and Adhesives 79, 1-9. https://doi.org/10.1016/j.ijadhadh.2017.04.008

Czakaj, J., Majewski, Ł., Żenkiewicz, M., Puszka, A. (2024). Mechanical and thermal properties of polypropylene, polyoxymethylene, and poly(methylmethacrylate) modified with adhesive resins. Journal of Composites Science 8(10), 384. https://doi.org/10.3390/jcs8100384

Dadbin, S., Frounchi, M., Haji-Saeid, M., Gangi, F. (2002). Molecular structure and physical properties of E-beam crosslinked low-density polyethylene for wire and cable insulation applications. Journal of Applied Polymer Science 86(8), 1959–1969. https://doi.org/10.1002/app.11111

Das, O., Babu, K., Shanmugam, V., Sykam, K., Tebyetekerwa, M., Esmaeely Neisiany, R., Forsth, M., Sas, G., Gonzalez-Libreros, J., Capezza, A.J., Hedenqvist, M.S., Berto, F., Ramakrishna, S. (2022). Natural and industrial wastes for sustainable and renewable polymer composites. Renewable and Sustainable Energy Reviews 158, 112054. https://doi.org/10.1016/j.rser.2021.11254

Djatlov, I.Ja. (2023). Matematicheskoe i algoritmicheskoe obespechenie sistemy podderzhki prinjatija reshenij operatora linii nepreryvnoj vulkanizacii kabel'noj produkcii [Mathematical and algorithmic support for the decision support system for the operator of a continuous vulcanization line for cable products]. Kandidatskaya dissertatsiya, Permskij gosudarstvennyj tekhnicheskij universitet [Candidate dissertation, Permskij gosudarstvennyj tekhnicheskij universitet]. https://pstu.ru/files/2/file/02 Proekt dissertacii Dyatlov IYA 1912 23.pdf

Du, B., Li, Z., Bai, H., Li, Q., Zheng, C., Liu, J., Qiu, F., Fan, Z., Hu, H., Chen, L. (2022). Mechanical property of long glass fiber reinforced polypropylene composite: From material to car seat frame and bumper beam. Polymers 14, 1814. https://doi.org/10.3390/polym14091814

Du, Y., Jiang, X., Jin, Y., Wang, F., Chi, Y., Buekens, A. (2017). TG-DSC and FTIR study on pyrolysis of irradiation cross-linked polyethylene. Journal of Material Cycles and Waste Management 19(4), 1400–1404. https://doi.org/10.1007/s10163-016-0530-z

Edwards, Y., Tasdemir, Y., Isacsson, U. (2006). Effects of commercial waxes on asphalt concrete mixtures performance at low and medium temperatures. Cold Regions Science and Technology 45(1), 31–41. https://doi.org/10.1016/j.coldregions.2006.01.002

Fomicheva, T.A., Serenko, O.A. (2023). Vlijanie temperatury na mehanicheskie svojstva vysokonapolnennyh kompozitov na osnove polipropilena i izmel’chjonnoj rezinovoj kroshki [Effect of temperature on the mechanical properties of highly filled composites based on polypropylene and ground rubber crumb]. Zhurnal NII jelementoorganicheskih soedinenij im. A.N. Nesmejanova RAN [Journal of the A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences] 5(4), 107–112. https://doi.org/10.32931/io.2220a

Goto, T., Yamazaki, T. (2004). Recycling of silane cross-linked polyethylene for insulation of cables using supercritical alcohol. Hitachi Cable Review 23, 24–27. https://doi.org/10.1109/IPADM.2003.1218644

Goto, T., Yamazaki, T., Sugeta, T., Okajima, I., Sako, T. (2008). Selective decomposition of the siloxane bond constituting the crosslinking element of silane‐crosslinked polyethylene by supercritical alcohol. Journal of Applied Polymer Science 109(1), 144–151. https://doi.org/10.1002/app.27928

Gu, J., Xu, H., Wu, C. (2020). Super-Toughened Heat-Resistant Poly(lactic acid) Alloys By Tailoring the Phase Morphology and the Crystallization Behaviors. Polymer Alloy Laboratory, East China University of Science and Technology 58, 500–509. https://doi.org/10.1002/pol.20190090

Gunewardena, A., Gilbert, M. (2008). Peroxide crosslinking of rigid polyvinylchloride. Journal of Vinyl & Additive Technology 14(3), 92–98. https://doi.org/10.1002/vnl.20158

Hamidi, N., Tebyanian, F., Massoudi, R., Whitesides, L. (2013). Pyrolysis of household plastic wastes. British Journal of Applied Science & Technology 3(3), 417–439. https://doi.org/10.9734/BJAST/2014/1984

Han, I.S., Choi, H.J., Lee, H.K. (2023). Polypropylene/polyolefin elastomer composites with enhanced impact strength: The effect of rubber domain size on toughness. Journal of Polymer Research 30(6), 224–284. https://doi.org/10.1007/s10965-023-03615-8

Haque, S.M., Ardila-Rey, J.A., Umar, Y., Mas’ud, A.A., Muhammad-Sukki, F., Jume, B.H., Rahman, H., Bani, N.A. (2021). Application and suitability of polymeric materials as insulators in electrical equipment. Energies 14(10), 2758. https://doi.org/10.3390/en14102758

Harada, M. (2016). Analytical methods for vulcanized rubbers. International Polymer Science and Technology 43(2), 45–54. https://doi.org/10.1177/0307174X1604300212

Havva, B.B., Ramisa, Y., Yavuz, E.Y., Burcu, S.O. (2024). Sustainable engineered designs and manufacturing of waste derived graphenes reinforced polypropylene composite for automotive interior parts. ACS Omega 9, 34530–34543. https://doi.org/10.1021/acsomega.4c01234

Hong, S.M., Cho, H.K., Koo, C.M., Lee, J.H., Park, W.Y., Lee, H.S., Lee, Y.W. (2008). Decrosslinking of cross-linked polyethylene using supercritical methanol. Korean Chemical Engineering Research 46(1), 63–68.

Husnutdinova, G.R., Zemskij, D.N., Karmanova, O.V. (2017). Polimerizacija vinilovyh monomerov v prisutstvii iniciirujushhih kataliticheskih kompleksov «tretichnye oksipropilirovannye aromaticheskie aminy – perekis' benzoila». [Polymerization of vinyl monomers in the presence of initiating catalytic complexes “tertiary oxypropylated aromatic amines – benzoyl peroxide”]. Vestnik VGUIT [Proceedings of VSUET] 79(2), 165–169. https://doi.org/10.20914/2310-1202-2017-2-165-169

Jamnongkan, T., Intraramongkol, N., Samoechip, W., Potiyaraj, P., Mongkholrattanasit, R., Jamnongkan, P., Wongwachirakorn, P., Sugimoto, M.I., Huang, C.F. (2022). Towards a circular economy: Study of the mechanical, thermal, and electrical properties of recycled polypropylene and their composite materials. Polymers 14, 5482–5511. https://doi.org/10.3390/polym14245482

Jha, S., Akula, B., Enyioma, H., Novak, M., Amin, V., Liang, H. (2024). Biodegradable biobased polymers: A review of the state of the art, challenges, and future directions. Polymers 16(16), 2262. https://doi.org/10.3390/polym16162262

Kayandan, S., Doshi, B.-N., Oral, E. (2018). Surface cross-linked ultra-high molecular weight polyethylene by emulsified diffusion of dicumyl peroxide. Journal of Biomedical Materials Research Part B: Applied Biomaterials 106B, 1517–1523. https://doi.org/10.1002/jbm.b.33957

Khan, T., Irfan, M. S., Ali, M., Dong, Y., Ramakrishna, S., Umer, R. (2021). Insights to low electrical percolation thresholds of carbon-based polypropylene nanocomposites. Carbon 176, 602–631. https://doi.org/10.1016/j.carbon.2021.01.01.158

Korelin, A.A., Trufanova, N.M. (2024). Analiz vlijanija kineticheskih i teplofizicheskih harakteristik polijetilena pri modelirovanii processa peroksidnoj sshivki izoljacii. [Analysis of the influence of kinetic and thermophysical characteristics of polyethylene in modeling the process of peroxide crosslinking of insulation]. Jelektrotehnika, informacionnye tehnologii, sistemy upravlenija. Vestnik PNIPU [Electrical Engineering, Information Technology, Control Systems. Bulletin of PNIPU] 50, 5–22. https://doi.org/10.15593/2224-9397/2024.2.01

Korelin, A.A., Trufanova, N.M. (2024). Analysis of the influence of kinetic and thermophysical characteristics of polyethylene in the modeling of the peroxide crosslinking process of insulation. PNRPU Bulletin: Electrical Engineering, Information Technologies, Control Systems 32(1), 112-128. https://doi.org/10.15593/2224-9397/2024.2.01

Korelin, A.A., Djatlov, I.Ja., Trufanova, N.M. (2020). Matematicheskaja model' i chislennyj analiz processa peroksidnoj sshivki izoljacii kabelej na srednee naprjazhenie [Mathematical model and numerical analysis of the peroxide crosslinking process of medium-voltage cable insulation]. Permskij nacional'nyj issledovatel'skij politehnicheskij universitet [Perm National Research Polytechnic University] 35(3), 119–132. https://doi.org/10.15593/2224-9397/2020.3.08

Korelin, V.K., Kalugina, O.S., Petrov, K.V. (2016). Termicheskie i termomehanicheskie osobennosti peroksidno-sshitogo polijetilena vysokoj plotnosti [Thermal and thermomechanical features of peroxide-crosslinked high-density polyethylene]. Izvestiya SPbGTI(TU). Seriya Khimia i tekhnologiya vysokomolekulyarnykh soedinenij [Proceedings of St. Petersburg State Institute of Technology (TU). Series Chemistry and Technology of High-Molecular Compounds] 33, 30–32.

Kovalenko, D.V., Zhivnickij, N.S. (2025). Ispol'zovanie pererabotannogo plastika v dorozhnoj odezhde [Use of recycled plastic in road pavement]. Vestnik nauki [Bulletin of Science] 3(84), 387–393. https://vestnik-nauki.com/article/21993

Kruželák, J., Kvasničáková, A., Hudec, I. (2020). Peroxide curing systems applied for cross-linking of rubber compounds based on SBR. Ain Shams Engineering Journal 79 (5), 15–21. https://doi.org/10.1016/j.aiepr.2020.05.001

Lee, K.H., Shin, D.H. (2006). A comparative study of liquid product on non catalytic and catalytic degradation of waste plastics using spent FCC catalyst. Korean Journal of Chemical Engineering 2, 209–215. https://doi.org/10.1007/BF02705718

Lenfeld, P., Brdlík, P., Borůvka, M., Běhálek, L., Habr, J. (2020). Effect of radiation crosslinking and surface modification of cellulose fibers on properties and characterization of biopolymer composites. Polymers 12(12), 3006. https://doi.org/10.3390/polym12123006

Likozar, B., Krajnc, M. (2011). Kinetic modeling of the peroxide cross-linking of polymers: From a theoretical model framework to its application for a complex polymer system. Chemical Engineering and Processing: Process Intensification 50(2), 200–210. https://doi.org/10.1016/j.cep.2010.12.007

Liu, S., Zhang, R., Fu, C., Zheng, T., Xue, P. (2025). Changes in heat resistance and mechanical properties of peroxide cross-linking HDPE: Effects of compounding cross-linkers. Polymers 17(4), 535. https://doi.org/10.3390/polym17040535

Liu, S.-Q., Gong, W.-G., Zheng, B.-C. (2014). The effect of peroxide cross-linking on the properties of low-density polyethylene. Journal of Macromolecular Science, Part B: Physics 53(1), 67–77. https://doi.org/10.1080/022348.2013789360

López Urionabarrenechea, A., de Marco, I., Caballero, B.M., Laresgoiti, M.F., Adrados, A., Aranzabal, A. (2011). Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM 5 zeolite and Red Mud. Applied Catalysis B: Environmental 104(3 4), 211–219. https://doi.org/10.1016/j.apcatb.2011.03.030

Makarova, M.A., Malygina, A.S., Pyshnograj, G.V., Rudakov, G.O. (2020). Modelirovanie reologicheskih svojstv rasplavov polijetilenov pri ih odnoosnom rastjazhenii. [Modeling of rheological properties of polyethylene melts under uniaxial tension]. Vychislitel'naja mehanika sploshnyh sred [Computational Mechanics of Continua] 13(1), 73–82. https://doi.org/10.7242/1999-6691/2020.13.1.6

Mamedli, U.M. (2018). Sshivka i napolnennye kompozity na osnove poliolefinov. [Crosslinking and filled composites based on polyolefins]. Izvestija vuzov. Serija Himija i himicheskaja tehnologija [Russian Journal of Physical Chemistry and Chemical Technology] 61(6), 4–16. https://doi.org/10.6060/tcct.20186106.5656

Marcilla, A., Ruiz-Femenia, R., Hernández, J., García-Quesada, J.C. (2006). Thermal and catalytic pyrolysis of crosslinked polyethylene. Journal of Analytical and Applied Pyrolysis 76(1–2), 254–259. https://doi.org/10.1016/j.jaap.2005.12.004

Mauri, M., Hofmann, A.I. (2020). Click chemistry-type crosslinking of a low-conductivity polyethylene copolymer ternary blend for power cable insulation. Polymer International 69, 404–412. https://doi.org/10.1002/pi.5966

Mhaske, S.T., Mestry, S.U., Patil, D.A. (2022). Cross-linking of polymers by various radiations: Mechanisms and parameters. In Radiation technologies and applications in materials science, 1–28. https://doi.org/10.1201/9781003321910-1

Mo, S.J., Zhang, J., Liang, D., Chen, H.Y. (2013). Study on pyrolysis characteristics of cross-linked polyethylene material cable. Procedia Engineering 52, 588–592. https://doi.org/10.1016/j.proeng.2013.02.190

Mohebbi, A., Mighri, F., Rodrigue, D. (2015). Current issues and challenges in polypropylene foaming: A review. Cellular Polymers 34(6). https://doi.org/10.1177/026248931503400602

Molchanov, V.I., Karmanova, O.V., Tihomirov, S.G. (2013). Modelirovanie kinetiki vulkanizacii polidienov. [Modeling the kinetics of polydiene vulcanization]. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernyh tehnologij [Bulletin of Voronezh State University of Engineering Technologies] 1(55), 142–145. https://core.ac.uk/download/pdf/143993731

Molchanov, V.I., Karmanova, O.V., Tihomirov, S.G. (2014). Modelirovanie kinetiki neizotermicheskoj vulkanizacii massivnyh rezinovyh izdelij. [Modeling of the kinetics of non-isothermal vulcanization of bulk rubber products]. Trudy BGTU. Himija, tehnologija organicheskih veshhestv i biotehnologija [Proceedings of BSTU. Chemistry, Technology of Organic Substances and Biotechnology] 4(168), 100–104.

Novikov, G.K. (2017). Influence of radiation crosslinking in an electric gas discharge on the mechanical strength of polyethylene cable insulation. Electricity 12, 43–46. https://doi.org/10.24160/0013-5380-2017-12-43-46

Park, H., Park, J., Jung, S.Y. (2019). Measurements of velocity and temperature fields in natural convective flows. International Journal of Heat and Mass Transfer 139(2), 293–302. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.022

Polujanovich, N.K., Bur'kov, D.V., Dubjago, M.N., Kachelaev, O.V. (2023). Analiz jelektromagnitnogo polja v kabel'nyh sistemah s izoljaciej iz polimernyh materialov [Electromagnetic field analysis in cable systems with polymer insulation]. Izvestija JuFO. Tekhnicheskie nauki. Jelektronika, nanotehnologii i priborostroenie [Proceedings of JFO. Technical sciences. Electronics, nanotechnology and instrumentation] 3, 251–266. https://doi.org/10.18522/2311-3103-2023-3-251-266

Pzybysz, M., Hejna, A., Haponiuk, J., Formela, K. (2019). Structural and thermo-mechanical properties of poly(ε-caprolactone) modified by various peroxide initiators. Polymers 11(7), 1101. https://doi.org/10.3390/polym11071101

Ramaswamy, K., Nagaprasad, N., Ramaswamy, S. (2025). Polymer nanocomposites: Innovations in material design and applications. In Advances in Polymer Nanocomposites, 28–40. https://doi.org/10.4018/979-8-3693-6326-3.ch008

Ren, Y., Sun, X., Chen, L., Li, Y., Sun, M., Duan, X., Liang, W. (2021). Structures and impact strength variation of chemically crosslinked high-density polyethylene: Effect of crosslinking density. RSC Advances 11, 6791–6797. https://doi.org/10.1039/DORA10365A

Ruslan, M.F., Youn, D.J., Aarons, R. (2021). Numerical analysis of a continuous vulcanization line to enhance CH4 reduction in XLPE-insulated cables. Materials 14(4), 1018. https://doi.org/10.3390/ma14041018

Ryzhikova, I.G., Volkov, A.M., Bauman, N.A., Kazakov, Ju.M., Vol'fson, S.I. (2013). Issledovanie fiziko-mehanicheskih svojstv smesej PP/SKJePT, modificirovannyh peroksidom i sistemoj peroksid/TMPTA. [Study of physico-mechanical properties of PP/SKJEPT blends modified with peroxide and peroxide/TMPTA system]. Vestnik Kazanskogo tehnologicheskogo universiteta [Herald of Kazan Technological University] 16(10), 134–137.

Sa, J., Kown, Y., Lee, J., Min, S. (2021). A study on applying phenol foam insulation material as pipe lagging material. Journal of the Korean Society of Hazard Mitigation 21(6), 125–131. https://doi.org/10.9798/KOSHAM.2021.21.6.125

Sa, J., Kown, Y., Lee, J., Min, S. (2021). A study on applying phenol foam insulation material as pipe lagging material. Journal of the Korean Society of Hazard Mitigation 21(6), 125–131. https://doi.org/10.9798/KOSHAM.2021.21.6.125

Sadirova, S.N. (2022). Studying the properties of crosslinked polyethylene. International Journal of Advanced Technology and Natural Sciences 3(1), 56–60. https://doi.org/10.24412/2181-144X-2022-1-56-60

Sahyoun, J., Crepet, A., Gouanve, F. (2016). Diffusion mechanism of byproducts resulting from the peroxide crosslinking of polyethylene. Journal of Applied Polymer Science 134(44525), 1–11. https://doi.org/10.1002/app.44525

Santana, R.C., Manrich, S. (2002). Studies on thermo-mechanical properties of post-consumer high impact polystyrene in five reprocessing steps. Progress in Rubber, Plastics and Recycling Technology 18(2), 99–110. https://doi.org/10.1177/147776060201800202

Schirmer, J., Kim, J.S., Klemm, E. (2001). Catalytic degradation of polyethylene using thermal gravimetric analysis and a cycled-spheres-reactor. Journal of Analytical and Applied Pyrolysis 60(2), 205–217. https://doi.org/10.1016/S0165-2370(00)00197-2

Serrano, D.P., Aguado, J., Escola, J.M., Garagorri, E. (2003). Performance of a continuous screw kiln reactor for the thermal and catalytic conversion of polyethylene–lubricating oil base mixtures. Applied Catalysis B: Environmental 44, 95. https://doi.org/10.1016/S0926 3373(03)00024 9

Shirvanimoghaddam, K., Balaji, K.V., Yadav, R., Zabihi, O., Ahmadi, M., Adetunji, P., Naebe, M. (2021). Balancing the toughness and strength in polypropylene composites. Composites Part B: Engineering 223, 109121–109122. https://doi.org/10.1016/j.compositesb.2021.109121

Sipaut, C.S., Sims, G.L., Ariff, Z.M. (2008). Crosslinking of polyolefin foam II. Applicability of parameters to assess crosslinking/foam density relationships. Cellular Polymers 27(1), 11-26. https://doi.org/10.1177/026248930802700102

Sircar, A.K., Wells, J.L. (1982). Thermal conductivity of elastomer vulcanizates by differential scanning calorimetry. Rubber Chemistry and Technology 55(1), 191–207. https://doi.org/10.5254/1.3535866

Skroznikov, S.V., Ljamkin, D.I., Zhemerikin, A.N., Kobec, A.V., Cherkashin, P.A., Cherepennikov, S.V. (2011). Modification of the peroxide crosslinking method of polyethylene for cable technology. Advances in Chemistry and Chemical Technology 61(1), 47–53

Takuma, K., Uemichi, Y., Sugioka, M., Ayame, A. (2001). Production of aromatic hydrocarbons by catalytic degradation of polyolefins over H-gallosilicate. Industrial & Engineering Chemistry Research 40(4), 1076–1082. https://doi.org/10.1021/ie000638j

Tamboli, S.M., Mhaske, S.T., Kale, D.D. (2004). Crosslinked polyethylene. Indian Journal of Chemical Technology 11, 853–864.

Tan, H., Guo, X., Tan, H., Zhang, Q., Liu, C., Shen, P., Qiao, L., Yan, X., Jing, L. (2022). Crystallization and mechanical properties of carbon nanotube/continuous carbon fiber/metallocene polypropylene composites. Materials Research Express 9, 1432–1433. https://doi.org/10.1088/2053-1591/ac46e6

Tanjung, F.A., Kuswardani, R.A., Idumah, C.I., Siregar, J.P., Karim, A. (2022). Characterization of mechanical and thermal properties of esterified lignin modified polypropylene composites filled with chitosan fibers. Polymers and Polymer Composites 30, 1–11.

Timakov, E.A., Panov, Ju.T. (2020). Peroksidnaja sshivka polijetilena v prisutstvii triallilcianurata. [Peroxide crosslinking of polyethylene in the presence of triallyl cyanurate]. Butlerovskie Soobshhenija [Butlerov Communications] 61(1), 40–47. https://doi.org/10.37952/ROI-jbc-01/20-61-1-40

Tokuda, S., Horikawa, S., Negishi, K., Uesugi, K., Hirukawa, H. (2003). Thermoplasticizing technology for the recycling of crosslinked polyethylene. Furukawa Review 23, 88–93.

Tsai, C.-Y., Zhang, T., Zhao, M., Chang, C.-S., Sue, H.-J. (2021). Preparation of thermally conductive but electrically insulated polypropylene containing copper nanowire. Polymer 23, 124317–124322. https://doi.org/10.1016/j.compscitech.2019.03.017

Tzelepis, D.A., Khoshnevis, A., Zayernouri, M., Ginzburg, V.V. (2023). Polyurea–graphene nanocomposites-the influence of hard-segment content and nanoparticle loading on mechanical properties. Polymers 15(22), 4434. https://doi.org/10.3390/polym15224434

Uyor, U.O., Ibhadode, A.O. Ekpe, U.J., Okoye, C.I. (2023). A review of recent advances on the properties of polypropylene–carbon nanotubes composites. Journal of Thermoplastic Composite Materials 36(9), 3737–3770. https://doi.org/10.1177/08927057221077868

Varga, L.J., Barany, T. (2021). Development of recyclable, lightweight polypropylene-based single polymer composites with amorphous poly-alpha-olefin matrices. Composites Science and Technology 201, 108535–108556. https://doi.org/10.1016/j.compscitech.2020.108535

Wakimoto, S. (1982). Fine spherical polymer particles and process for the preparation thereof (U.S. Patent No. 4,360,611). U.S. Patent and Trademark Office.

Wasti, S., Kore, S., Yeole, P., Tekinalp, H., Ozcan, S., Vaidya, U. (2022). Bamboo fiber reinforced polypropylene composites for transportation applications. Polymeric and Composite Materials 9, 3191–3126. https://doi.org/10.3389/fmats.2022.967512

Watanabe, S., Komura, K., Nagaya, S., Morita, H., Nakamoto, T., Hirai, S., Aida, F. (2003). Development of cross-linked polymer material recycling technology by supercritical water. In Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials 2, 595–598. https://doi.org/10.1109/ICPADM.2003.1218487

Wehtje, E.W., Feist, J.D., Hwang, M.C. (1996). Apparatus for manufacturing expandable polystyrene (EPS) pellets (U.S. Patent No. 6365275B1). U.S. Patent and Trademark Office).

Wu, J., Wu, Z.L., Yang, H., Zheng, Q. (2014). Crosslinking of polyethylene using peroxides. RSC Advances 4, 54801–54812. https://doi.org/10.1039/C3RA46159B

Yang, L., Xiang, M., Zhu, Y., Yang, Z. (2023). Influences of carbon nanotubes/polycarbonate composite on enhanced local marking properties of polypropylene. Polymer Bulletin 8, 1321–1333. https://doi.org/10.1007/s00289-022-04123-3

Yeoh, O.H. (2012). Mathematical modeling of vulcanization characteristics. Rubber Chemistry and Technology 85(3), 482–492. https://doi.org/10.5254/rct.12.87982

Zhang, C., Jiang, Y., Li, S., Huang, Z., Zhan, S.-K., Ma, N., Cai, F.-K. (2022). Recent trends in the processing of modified polypropylene composites using phosphorus-containing flame retardants. Heliyon 8, e11225. https://doi.org/10.1016/j.helyon.2022.e11225

Zhang, Z., Liu, J. (2025). Recycling of cross-linked polymers: New advances and applications. Journal of Polymer Science: Part B: Polymer Physics 10(1), 1–34. https://doi.org/10.1002/polb.24220

Zhao, W., Kundu, C.K., Li, Z., Li, X., Zhang, Z. (2021). Flame retardant treatments for polypropylene: Strategies and recent advances. Composites Part A: Applied Science and Manufacturing 145, 106382. https://doi.org/10.1016/j.compositesa.2021.106382

Zhigalov, D.V. (2010). Mify o trubah iz sshitogo polijetilena. [Myths about crosslinked polyethylene pipes]. Voprosy jekspluatacii truboprovodov, [Vesta Regiony LLC. Valtec], 295–299. https://www.valtec.ru/articles/miify-o-trubah-iz-sshitogo-polietilena

Zyuzin, A.M., Karpeev, A.A., Igonchenkova, K.E. (2023). Influence of carbon black content on the current-voltage characteristics of polymer composites. Technical Physics Letters 49(13), 21–24.

Zyuzin, A.M., Karpeev, A.A., Yantsen, N.V. (2022). Influence of carbon black content on the temperature dependence of the electrical conductivity of a polymer composite. Technical Physics Letters 48(1), 31–35 https://doi.org/10.21883/PJTF.2022.01.51879.18965.

Published

2025-06-30

Issue

Section

Chemistry

Similar Articles

<< < 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.