Risks to the ecosystem when antibiotics enter water bodies


Views: 151 / PDF downloads: 30

Authors

DOI:

https://doi.org/10.32523/2616-6771-2025-151-2-211-236

Keywords:

aquatic contamination, pharmaceuticals, wastewater, antibiotics, resistance, ecotoxicants, hydrobionts, bioaccumulation, microorganisms

Abstract

The problem of antibiotic pollution in the environment has serious consequences for ecosystems and poses a threat to human health. Research in this field covers a wide range of tasks and objects. This article reviews domestic and international literature on the dynamics and distribution of antibiotics in environmental components, the key sources of antibiotic contamination in aquatic environments, and the mechanisms of antibiotic impact on hydrobionts. The migration pathways of antibiotics from their sources, as well as their persistence in various environments, including wastewater from medical institutions, pharmaceutical production, households, agricultural fertiliser use, animal husbandry, and aquaculture, are described. Particular attention is given to the formation and further spread of antibiotic resistance in hydrobionts. Particular interest is given to studies on ecotoxic concentrations of pharmaceuticals in the environment. The role of antibiotics in environment processes is examined, including their impact on the decomposition of organic matter , the accumulation of toxic nitrogen and phosphorus compounds, and eutrophication. It has been found that, in addition to the existence of various mechanisms of antibiotic dynamics and ecotoxicokinetics, all pathways of pharmaceutical distribution and their impact on environmental components are generally interconnected and interdependent. All of this can be seen as a unified system of biogeochemical process destabilization. Based on the research review, a set of integrated measures has been proposed, including monitoring, regulation of antibiotic use, and the development of new technologies for removing ecotoxicants from water.

Downloads

Download data is not yet available.

References

Abebe, G.M. (2020). The role of bacterial biofilm in antibiotic resistance and food contamination. International Journal of Microbiology, 1705814. https://doi.org/10.1155/2020/1705814

Akbayeva, L., Tulegenov, E., Omarbayeva, A., Kobetaeva, N., Nurgalieva, Z., Nurkeyev, Y., Martišová, P., Vietoris, V., Zhanabaev, A. (2019). Ecotoxicological studies of Akmola region lakes. Potravinarstvo Slovak Journal of Food Sciences 13(1), 25–31. https://doi.org/10.5219/824

Akbayeva, L., Bakeshova, Z., Mamytova, N., Yelikbayev, B., Abzhalelov, A., Tazitdinova, R., Beisenova, R. (2024). Determination of the microorganisms’ resistance to antibiotics in the bacterioplankton community in the Akmola Region lakes. Journal of Ecological Engineering 25(6), 99–108. https://doi.org/10.12911/22998993/187024

Akbayeva, L., Mamytova, N., Beisenova, R., Tazitdinova, R., Abzhalelov, A., Akhayeva, A. (2020). Studying the self-cleaning ability of water bodies and watercourses of Arshalyn District of Akmola Region. Journal of Environmental Management and Tourism 11(5), 1095–1104. https://doi.org/10.14505/jemt.v11.5(45).07

Akbayeva, L., Muratov, R., Zhamangara, A., Beisenova, R., Zhantokov, B. (2014). Seasonal dynamics of phytoplankton and bacterial plankton characteristics in Esil River. Biosciences Biotechnology Research Asia 11(3), 1087–1093. https://doi.org/10.13005/bbra/1493

Akbayeva, L., Yevneyeva, D., Temreshev, I., Abzhalelov, A., Tekebayeva, Z., Temirbekova, A., Mkilima, T. (2025). Potential biodiversity disruptions caused by changes in water body coverage: A case of Lake Taldykol, Kazakhstan. Polish Journal of Environmental Studies, 34(3), 3011–3031. https://doi.org/10.15244/pjoes/188834

Akhter, S., Bhat, M. A., Ahmed, S., Siddiqui, W.A. (2024). Antibiotic residue contamination in the aquatic environment, sources and associated potential health risks. Environmental Geochemistry and Health 46(10), 387. https://doi.org/10.1007/s10653-024-02146-5

Andryukov, B.G., Besednova, N.N., Zaporozhec, T.S. (2022). Mikroplastik i ego rol' v sokhranenii i rasprostranenii genov rezistentnosti k antibiotikam v morskikh ekosistemakh [Microplastics and their role in the maintenance and spread of antibiotic resistance genes in marine ecosystems]. Antibiotiki i Khimioterapiya [Antibiotics and Chemotherapy] 67(7–8), 61–70. https://doi.org/10.37489/0235-2990-2022-67-7-8-61-70

Apreja, M., Sharma, A., Balda, S., Kataria, K., Capalash, N., Sharma, P. (2022). Antibiotic residues in environment: Antimicrobial resistance development, ecological risks, and bioremediation. Environmental Science and Pollution Research International 29(3), 3355–3371. https://doi.org/10.1007/s11356-021-17374-w

Bacanlı, M., Başaran, N. (2019). Importance of antibiotic residues in animal food. Food and Chemical Toxicology 125, 462–466. https://doi.org/10.1016/j.fct.2019.01.033

Becerra, C.A., Murphy, B., Veldman, B.V., Nüsslein, K. (2024). Biogenic sulfide-mediated iron reduction at low pH. Microorganisms 12(10), 1939. https://doi.org/10.3390/microorganisms12101939

Brunton, L.A., Desbois, A.P., Garza, M., Wieland, B., Mohan, C.V., Häsler, B., Tam, C.C., Le, P.N.T., Phuong, N.T., Van, P.T., Nguyen-Viet, H., Eltholth, M.M., Pham, D.K., Duc, P.P., Linh, N.T., Rich, K.M., Mateus, A.L.P., Hoque, M.A., Ahad, A., Khan, M.N.A., Guitian, J. (2019). Identifying hotspots for antibiotic resistance emergence and selection, and elucidating pathways to human exposure: Application of a systems-thinking approach to aquaculture systems. The Science of the Total Environment 687, 1344–1356. https://doi.org/10.1016/j.scitotenv.2019.06.134

Buschmann, A.H., Tomova, A., López, A., Maldonado, M.A., Henríquez, L.A., Ivanova, L., Moy, F., Godfrey, H.P., Cabello, F.C. (2012). Salmon aquaculture and antimicrobial resistance in the marine environment. PLOS ONE 7(8), e42724. https://doi.org/10.1371/journal.pone.0042724

Cao, L., Naylor, R., Henriksson, P., Leadbitter, D., Metian, M., Troell, M., Zhang, W. (2015). Global food supply. China’s aquaculture and the world’s wild fisheries. Science 347(6218), 133–135. https://doi.org/10.1126/science.1260149

Chen, H., Jing, L., Teng, Y., Wang, J. (2018). Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks. The Science of the Total Environment 618, 409–418. https://doi.org/10.1016/j.scitotenv.2017.11.054

Chukwu, K.B., Abafe, O.A., Amoako, D.G., Essack, S.Y., Abia, A.L.K. (2023). Environmental concentrations of antibiotics, biocides, and heavy metals fail to induce phenotypic antimicrobial resistance in Escherichia coli. The Science of the Total Environment 899, 165721. https://doi.org/10.1016/j.scitotenv.2023.165721

Cowieson, A., Kluenter, A.M. (2019). Contribution of exogenous enzymes to potentiate the removal of antibiotic growth promoters in poultry production. Animal Feed Science and Technology 250, 81–92. https://doi.org/10.1016/j.anifeedsci.2018.04.026

Dolina, L.F., Savina, O.P. (2018). Ochistka vod ot ostatkov lekarstvennykh preparatov [Water cleaning from residues of medicinal preparation]. Vestnik Dnepropetrovskogo natsional'nogo universiteta zheleznodorozhnogo transporta [Bulletin of the Dnepropetrovsk National University of Railway Transport] 3(75), 36–51. https://doi.org/10.15802/stp2018/134675

Dyagelev, M.Y., Abramova, A.A. (2023). Analiz metodov obnaruzheniya antibiotikov v gorodskikh stochnykh vodakh [Analysis of methods for the detection of antibiotics in wastewater]. Inzhenerno-stroitel'nyy vestnik Prikaspiya [Engineering-construction Bulletin of the Caspian Region] 4(46), 24–28. https://doi.org/10.52684/2312-3702-2023-46-4-24-28

Ekwanzala, M.D., Lehutso, R.F., Kasonga, T.K., Dewar, J.B., Momba, M.N.B. (2020). Environmental dissemination of selected antibiotics from hospital wastewater to the aquatic environment. Antibiotics (Basel, Switzerland) 9(7), 431. https://doi.org/10.3390/antibiotics9070431

Evangelista, P.A., Lourenço, F.M.O., Chakma, D., Shaha, C.K., Konate, A., Pimpinato, R.F., Louvandini, H., Tornisielo, V.L. (2023). Bioaccumulation and depletion of the antibiotic sulfadiazine 14C in lambari (Astyanax bimaculatus). Animals: An Open Access Journal from MDPI 13(15), 2464. https://doi.org/10.3390/ani13152464

Get'man, M.A., Narkevich, I.A. (2013). Lekarstvennye sredstva v okruzhayushchej srede [Medicines in the environment]. Remedium. Zhurnal o rossiyskom rynke lekarstv i meditsinskoy tekhnike [Remedium. A magazine about the Russian market of medicines and medical equipment] 2, 50–54.

Glaskovich, M.A., Kapitonova, E.A. (2010). Vliyanie kormovykh antibiotikov na kishechnyy mikrobiotsenoz selʹskokhozyaystvennykh zhivotnykh: kratkiy analiticheskiy obzor [Effect of feed antibiotics on the intestinal microbiocenosis of farm animals: A brief analytical review]. Uchenye zapiski uchrezhdeniya obrazovaniya Vitebskaya ordena Znak pocheta gosudarstvennaya akademiya veterinarnoi meditsiny [Scientific notes of the educational institution of the Vitebsk Order of Honor of the State Academy of Veterinary Medicine] 46(1-1), 194–197. http://repo.vsavm.by/handle/123456789/2821

Gorito, A.M., Ribeiro, A.R.L., Rodrigues, P., Pereira, M.F.R., Guimarães, L., Almeida, C.M.R., Silva, A.M.T. (2022). Antibiotics removal from aquaculture effluents by ozonation: Chemical and toxicity descriptors. Water Research 218, 118497. https://doi.org/10.1016/j.watres.2022.118497

Gudda, F., Odinga, E.S., Tang, L., Waigi, M.G., Wang, J., Abdalmegeed, D., Gao, Y. (2023). Tetracyclines uptake from irrigation water by vegetables: Accumulation and antimicrobial resistance risks. Environmental Pollution (Barking, Essex: 1987) 338, 122696. https://doi.org/10.1016/j.envpol.2023.122696

Hacıosmanoğlu, G.G., Arenas, M., Mejías, C., Martín, J., Santos, J.L., Aparicio, I., Alonso, E. (2023). Adsorption of fluoroquinolone antibiotics from water and wastewater by colemanite. International Journal of Environmental Research and Public Health 20(3), 2646. https://doi.org/10.3390/ijerph20032646

He, G., Jiang, X., Yao, L., Liu, G., Yang, Y., Jiang, Y., Liu, W. (2021). Effects of tetracycline on nitrogen and carbon cycling rates and microbial abundance in sediments with and without biochar amendment. Chemosphere 270, 129509. https://doi.org/10.1016/j.chemosphere.2020.129509

Herrero-Villar, M., Taggart, M.A., Mateo, R. (2024). Pharmaceuticals in avian scavengers and other birds of prey: A toxicological perspective to improve risk assessments. The Science of the Total Environment 948, 174425. https://doi.org/10.1016/j.scitotenv.2024.174425

Hou, L., Yin, G., Liu, M., Zhou, J., Zheng, Y., Gao, J., Zong, H., Yang, Y., Gao, L., Tong, C. (2015). Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments. Environmental Science & Technology 49(1), 326–333. https://doi.org/10.1021/es504433r

Hu, Y., Cheng, H. (2016). Health risk from veterinary antimicrobial use in China's food animal production and its reduction. Environmental Pollution (Barking, Essex: 1987) 219, 993–997. https://doi.org/10.1016/j.envpol.2016.04.099

Huang, A., Yan, M., Lin, J., Xu, L., Gong, H., Gong, H. (2021). A review of processes for removing antibiotics from breeding wastewater. International Journal of Environmental Research and Public Health 18(9), 4909. https://doi.org/10.3390/ijerph18094909

Huang, L., Mo, Y., Wu, Z., Rad, S., Song, X., Zeng, H., Bashir, S., Kang, B., Chen, Z. (2020). Occurrence, distribution, and health risk assessment of quinolone antibiotics in water, sediment, and fish species of Qingshitan reservoir, South China. Scientific Reports 10(1), 15777. https://doi.org/10.1038/s41598-020-72324-9

Huong, N.T.M., Thuy, N.T., Hoai, P.T.T., Thi Huong, P. (2025). Effective inhibition of antibiotic residues and bacterial pathogens in wastewater using TiO2 metal oxide photocatalyst. Journal of Environmental Science and Health. Part B, Pesticides, Food Contaminants and Agricultural Wastes 60(2), 70–78. https://doi.org/10.1080/03601234.2025.2450931

Kenneth, M.J., Koner, S., Hsu, G.J., Chen, J.S., Hsu, B.M. (2023). A review on the effects of discharging conventionally treated livestock waste to the environmental resistome. Environmental Pollution (Barking, Essex: 1987) 338, 122643. https://doi.org/10.1016/j.envpol.2023.122643

Kümmerer, K. (2009). Antibiotics in the aquatic environment - A review - Part I. Chemosphere 75(4), 417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

Liu, K., Yin, X., Zhang, D., Yan, D., Cui, L., Zhu, Z., Wen, L. (2018). Distribution, sources, and ecological risk assessment of quinolone antibiotics in the surface sediments from Jiaozhou Bay wetland, China. Marine Pollution Bulletin 129(2), 859–865. https://doi.org/10.1016/j.marpolbul.2017.10.010

Liu, S., Zhao, H., Lehmler, H.J., Cai, X., Chen, J. (2017). Antibiotic pollution in marine food webs in Laizhou Bay, North China: Trophodynamics and human exposure implication. Environmental Science & Technology 51(4), 2392–2400. https://doi.org/10.1021/acs.est.6b04556

Liu, X., Lu, S., Guo, W., Xi, B., Wang, W. (2018). Antibiotics in the aquatic environments: A review of lakes, China. The Science of the Total Environment 627, 1195–1208. https://doi.org/10.1016/j.scitotenv.2018.01.271

Liu, Y., Tong, Z., Shi, J., Jia, Y., Yang, K., Wang, Z. (2020). Correlation between exogenous compounds and the horizontal transfer of plasmid-borne antibiotic resistance genes. Microorganisms 8(8), 1211. https://doi.org/10.3390/microorganisms8081211

Lulijwa, R., Rupia, E.J., Alfaro, A.C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Reviews in Aquaculture 12(2), 640–663. https://doi.org/10.1111/raq.12344

Lykov, I.N. (2020). Pharmaceutical contamination of the environment. Problemy Regional'noj Ekologii 3, 23–27. https://doi.org/10.24411/1728-323X-2020-13023

Lyu, J., Yang, L., Zhang, L., Ye, B., Wang, L. (2020). Antibiotics in soil and water in China - a systematic review and source analysis. Environmental Pollution (Barking, Essex: 1987) 266(Pt 1), 115147. https://doi.org/10.1016/j.envpol.2020.115147

Mallory, T.G. (2013). China's distant water fishing industry: Evolving policies and implications. Marine Policy 38, 99–108. https://doi.org/10.1016/j.marpol.2012.05.024

Tang, Y., Lou, X., Yang, G., Tian, L., Wang, Y., Huang, X. (2022). Occurrence and human health risk assessment of antibiotics in cultured fish from 19 provinces in China. Frontiers in cellular and infection microbiology 12, 964283. https://doi.org/10.3389/fcimb.2022.964283

Mancuso, G., Midiri, A., Gerace, E., Biondo, C. (2021). Bacterial antibiotic resistance: The most critical pathogens. Pathogens (Basel, Switzerland) 10(10), 1310. https://doi.org/10.3390/pathogens10101310

Manyi-Loh, C., Mamphweli, S., Meyer, E., Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules (Basel, Switzerland) 23(4), 795. https://doi.org/10.3390/molecules23040795

Munita, J.M., Arias, C.A. (2016). Mechanisms of antibiotic resistance. Microbiology Spectrum 4(2). https://doi.org/10.1128/microbiolspec.VMBF-0016-2015

Ogunbanwo, O.M., Kay, P., Boxall, A.B., Wilkinson, J., Sinclair, C.J., Shabi, R.A., Fasasi, A.E., Lewis, G.A., Amoda, O.A., Brown, L.E. (2022). High concentrations of pharmaceuticals in a Nigerian river catchment. Environmental Toxicology and Chemistry 41(3), 551–558. https://doi.org/10.1002/etc.4879

Okeke, E.S., Chukwudozie, K.I., Nyaruaba, R., Ita, R.E., Oladipo, A., Ejeromedoghene, O., Atakpa, E.O., Agu, C.V., Okoye, C.O. (2022). Antibiotic resistance in aquaculture and aquatic organisms: A review of current nanotechnology applications for sustainable management. Environmental Science and Pollution Research International 29(46), 69241–69274. https://doi.org/10.1007/s11356-022-22319-y

Postigo, C., Richardson, S.D. (2014). Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment. Journal of Hazardous Materials 279, 461–475. https://doi.org/10.1016/j.jhazmat.2014.07.029

Qian, W., Yang, Y., Xinyue, D., Hanqi, L., Lanlan, C., Wenhui, H., Juan-Ying, L. (2024). Reducing baseline toxicity in fishery product-related sediments from land to sea: Region-specific solutions are required. The Science of the Total Environment 946, 174024. https://doi.org/10.1016/j.scitotenv.2024.174024

Qiu, X., Zhou, G., Wang, H., Wu, X. (2021). The behavior of antibiotic-resistance genes and their relationships with the bacterial community and heavy metals during sewage sludge composting. Ecotoxicology and Environmental Safety 216, 112190. Advance online publication. https://doi.org/10.1016/j.ecoenv.2021.112190

Rigos, G., Bitchava, K., Nengas, I. (2010). Antibacterial drugs in products originating from aquaculture: Assessing the risks to public welfare. Mediterranean Marine Science 11(1), 33–41. https://doi.org/10.12681/mms.89

Sharma, M., Yadav, A., Dubey, K.K., Tipple, J., Das, D.B. (2022). Decentralized systems for the treatment of antimicrobial compounds released from hospital aquatic wastes. The Science of the Total Environment 840, 156569. https://doi.org/10.1016/j.scitotenv.2022.156569

Shulgina, L.V., Yakush, E.V., Shulgin, Yu.P., Shenderyuk, V.V., Chukalova, N.N., Baholdina, L.P. (2015). Antibiotiki v ob"ektah akvakul'tury i ih ekologicheskaya znachimost'. [Antibiotics in aquaculture and their ecological significance]. Obzor. Izvestiya TINRO (Tihookeanskogo nauchno-issledovatel'skogo rybohozyajstvennogo centra) [Review. Izvestiya TINRO (Pacific Scientific Research Fisheries Center)] 181, 216–230. https://doi.org/10.26428/1606-9919-2015-181-216-230

Siedlewicz, G., Białk-Bielińska, A., Borecka, M., Winogradow, A., Stepnowski, P., Pazdro, K. (2018). Presence, concentrations and risk assessment of selected antibiotic residues in sediments and near-bottom waters collected from the Polish coastal zone in the southern Baltic Sea - Summary of 3 years of studies. Marine Pollution Bulletin 129(2), 787–801. https://doi.org/10.1016/j.marpolbul.2017.10.075

Smola-Dmochowska, A., Lewicka, K., Macyk, A., Rychter, P., Pamuła, E., Dobrzyński, P. (2023). Biodegradable polymers and polymer composites with antibacterial properties. International Journal of Molecular Sciences 24(8), 7473. https://doi.org/10.3390/ijms24087473

Spielmeyer, A., Petri, M.S., Höper, H., Hamscher, G. (2020). Long-term monitoring of sulfonamides and tetracyclines in manure amended soils and leachate samples - A follow-up study. Heliyon 6(8), e04656. https://doi.org/10.1016/j.heliyon.2020.e04656

Tang, Y., Lou, X., Yang, G., Tian, L., Wang, Y., Huang, X. (2022). Occurrence and human health risk assessment of antibiotics in cultured fish from 19 provinces in China. Frontiers in Cellular and Infection Microbiology 12, 964283. https://doi.org/10.3389/fcimb.2022.964283

Timofeeva, S.S., Gudilova, O.S. (2021). Antibiotiki v okruzhayushchej srede: sostoyanie i problemy [Antibiotics in the environment: Status and problems]. XXI vek. Tekhnosfernaya bezopasnost' [The 21st century. Technosphere safety] 6(3(23)), 251–265. https://doi.org/10.21285/2500-1582-2021-3-251-265

Titova, K.V., Kokryatskaya, N.M., Zhibareva, T.A., Vahrameeva, E.A. (2017). Raspredelenie soyedineniy sery v rezul'tate protsessa sul'fatreduktsii v presnovodnom ozere Svyatoe [Distribution of sulfur compounds as a result of the sulfate reduction process in freshwater lake Svyatoe]. Trudy Karel'skogo Nauch'nogo Tsentra Rossijskoj Akademii Nauk [Proceedings of the Karelian Scientific Center of the Russian Academy of Sciences] 10, 28–37. https://doi.org/10.17076/lim510

Tokuda, M., Shintani, M. (2024). Microbial evolution through horizontal gene transfer by mobile genetic elements. Microbial Biotechnology 17(1), e14408. https://doi.org/10.1111/1751-7915.14408

Tulegenova, S., Zhantokov, B., Shingisbayeva, Z., Beisenova, R., Dukenbayeva, A., Rakhymzhan, Z., Shamshedenova, S., Zhupysheva, A., Rymbayeva, R., Turlybekova, G., Zhaznayeva, Z. (2024). Toxic effects of aquatic pharmaceuticals on Chlorella sp. in Kazakhstan. International Journal of Design & Nature and Ecodynamics 19(6), 1919–1929. https://doi.org/10.18280/ijdne.190608

Urbano, V.R., Maniero, M.G., Pérez-Moya, M., Guimarães, J.R. (2017). Influence of pH and ozone dose on sulfaquinoxaline ozonation. Journal of Environmental Management 195(Pt 2), 224–231. https://doi.org/10.1016/j.jenvman.2016.08.019

Välitalo, P., Kruglova, A., Mikola, A., Vahala, R. (2017). Toxicological impacts of antibiotics on aquatic micro-organisms: A mini-review. International Journal of Hygiene and Environmental Health 220(3), 558–569. https://doi.org/10.1016/j.ijheh.2017.02.003

Vinogradova, K.A., Bulgakova, V.G., Polin, A.N., Kozhevin, P.A. (2013). Ustojchivost' mikroorganizmov k antibiotikam: rezistoma, eyo ob"yom, raznoobrazie i razvitie [Microbial antibiotic resistance: Resistome, its volume, diversity, and development]. Antibiotiki i himioterapiya [Antibiotics and chemotherapy] 58(5-6), 38-48.

Wang, A., Ran, C., Wang, Y., Zhang, Z., Ding, Q., Yang, Y., Olsen, R.E., Ringø, E., Bindelle, J., Zhou, Z. (2019). Use of probiotics in aquaculture of China - A review of the past decade. Fish & Shellfish Immunology 86, 734–755. https://doi.org/10.1016/j.fsi.2018.12.026

Wang, M., Helbling, D.E. (2016). A non-target approach to identify disinfection byproducts of structurally similar sulfonamide antibiotics. Water Research 102, 241–251. https://doi.org/10.1016/j.watres.2016.06.042

Wasmund, K., Mußmann, M., Loy, A. (2017). The life sulfuric: Microbial ecology of sulfur cycling in marine sediments. Environmental Microbiology Reports 9(4), 323–344. https://doi.org/10.1111/1758-2229.12538

Wilkinson, J.L., Boxall, A.B.A., Kolpin, D.W., Leung, K.M.Y., Lai, R.W.S., Galbán-Malagón, C., Adell, A.D., Mondon, J., Metian, M., Marchant, R.A., Bouzas-Monroy, A., Cuni-Sanchez, A., Coors, A., Carriquiriborde, P., Rojo, M., Gordon, C., Cara, M., Moermond, M., Luarte, T., Petrosyan, V., Teta, C. (2022). Pharmaceutical pollution of the world's rivers. Proceedings of the National Academy of Sciences of the United States of America 119(8), e2113947119. https://doi.org/10.1073/pnas.2113947119

Yang, M., Xu, Q., Gu, K., Wen, R., Zhou, C., Zhao, Y., Guo, B., Xu, W., Zhang, Y., Li, C., Lei, C., Wang, H. (2025). Development of a nanobody-horseradish peroxidase fusion-based competitive ELISA to rapidly and sensitively detect enrofloxacin residues in animal-derived foods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 327, 125309. https://doi.org/10.1016/j.saa.2024.125309

Yin, X., Zhong, Y., Chen, A., Bao, T., Deng, Q., Zhang, Y., Yang, R. (2024). A triple-channel sensor array utilizing fluorescent carbon dots for simultaneous discrimination and detection of multiple fluoroquinolones. Talanta 279, 126608. https://doi.org/10.1016/j.talanta.2024.126608

Zeng, Y., Chang, F., Liu, Q., Duan, L., Li, D., Zhang, H. (2022). Recent advances and perspectives on the sources and detection of antibiotics in aquatic environments. Journal of Analytical Methods in Chemistry 2022, 5091181. https://doi.org/10.1155/2022/5091181

Zhang, G., Ju, P., Lu, W., Li, A., Zhang, Q., Jiang, L., Zhang, E. (2024). Rational design of a novel Zn-MOF for fluorescent detection of nitrofuran antibiotics: The synthesis, structure and sensing applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 322, 124836. https://doi.org/10.1016/j.saa.2024.124836

Zhang, T., Ding, Y., Peng, J., Dai, Y., Luo, S., Liu, W., Ma, Y. (2022). Effects of broad-spectrum antibiotic (florfenicol) on resistance genes and bacterial community structure of water and sediments in an aquatic microcosm model. Antibiotics (Basel, Switzerland) 11(10), 1299. https://doi.org/10.3390/antibiotics11101299

Zhang, Y., Li, X., Liu, Z., Zhao, X., Chen, L., Hao, G., Ye, X., Meng, S., Xiao, G., Mu, J., Mu, X., Qiu, J., Qian, Y. (2023). The neurobehavioral impacts of typical antibiotics toward zebrafish larvae. Chemosphere 340, 139829. https://doi.org/10.1016/j.chemosphere.2023.139829

Zhong, X., Zhu, Y., Wang, Y., Zhao, Q., Huang, H. (2021). Effects of three antibiotics on growth and antioxidant response of Chlorella pyrenoidosa and Anabaena cylindrica. Ecotoxicology and Environmental Safety 211, 111954. https://doi.org/10.1016/j.ecoenv.2021.111954

Zhou, J., Wu, H., Wang, H., Wu, Z., Shi, L., Tian, S., Hou, L.A. (2025). Metagenomics reveals the resistance patterns of electrochemically treated erythromycin fermentation residue. Journal of Environmental Sciences (China) 148, 567–578. https://doi.org/10.1016/j.jes.2024.01.030

Zhu, Y.G., Gillings, M., Simonet, P., Stekel, D., Banwart, S., Penuelas, J. (2018). Human dissemination of genes and microorganisms in Earth's Critical Zone. Global Change Biology 24(4), 1488–1499. https://doi.org/10.1111/gcb.14003

Published

2025-06-30

Issue

Section

Ecology

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.