Modelling of water balance elements in the Sarysu River basin based on hydrological and climatic observation data
Views: 2 / PDF downloads: 3
DOI:
https://doi.org/10.32523/2616-6771-2025-150-1-129-151Keywords:
water balance equation, linear-correlation equation, river runoff, precipitation, regression coefficient, evapotranspiration, soil moisture reservesAbstract
To analyse and assess water resources in the runoff formation zone of the Sarysu River basin, data on average annual water discharge of the rivers Zhaman-Sarysu, Zhaksy-Sarysu, Atasu, Kara-Kengir, Zhylandy, Zhezdy, and Tokrau were used, as well as information on annual precipitation recorded at meteorological stations Aksu-Ayuly, Agadyr, Aktogay and Ulytau, relatively evenly located within the low mountains of the Kazakh shallow zone, for the period of observations from 1940 to 2021. Analysis and assessment on the basis of sufficiently long time series of hydrological river runoff and annual precipitation of the Sarysu River basin using the methods of difference integral curves show the presence of cyclic fluctuations due to the diversity of catchment response to precipitation, which are synchronous in nature, including short-term cycles characteristic of separate phases of rise and fall. Statistically substantiated estimation of parameters of the linear-correlation equation of the river water balance, which characterises the dependence of hydrological runoff on precipitation falling in the catchment of the Sarysu River basin, serves as a scientific basis for the development of mathematical models of water balance elements. These models include potential-possible layer of river runoff, soil moisture reserves by evaporation, evaporation of atmospheric precipitation in the process of water formation, total evaporation and flood runoff based on mathematical and physical characteristics of the regression coefficient.
Downloads
References
Akhmedova, N. R., & Naumov, N. R. (2023). Analiz ryadov godovykh summ atmosfernykh osadkov meteostantsii Kaliningradskoi oblasti s uchetom korrektirovki pokazanii osadkomerov [Analysis of Annual Atmospheric Precipitation Series at Kaliningrad Region Meteorological Stations with Adjustment of Precipitation Gauge Readings]. Vestnik Udmurtskogo Universiteta, seriya biologiya. Nauka o zemle [Bulletin of Udmurt University, Series Biology. Earth Sciences], 33(3), 299–231.
Alekseev, G. A. (1948). Dinamika infiltratsii dozhdevoi vody v pochvu [Dynamics of Rainwater Infiltration into Soil]. Trudy GGI, (6), 43–72.
Al-Lafta, H. S., Al-Tawash, B. S., & Al-Baldawi, B. A. (2013). Applying the «abcd» monthly water balance model for some regions in the United States. Advances in Physics Theories and Applications, 25, 36–47.
Alemaw, B. F. (2006). A hybrid atmospheric and terrestrial water balance model: A GIS-based approach for large drainage basins. Internal Research Report, University of Botswana.
Befani, A. N. (1957). Puti geneticheskogo opredeleniya normy stoka [Methods of Genetic Determination of Runoff Norms]. Nauchnyi ezhegodnik OGU [Scientific Yearbook of OGU], 17–23.
Belete, M., Deng, J., Zhou, M., Wang, K., You, S., Hong, Y., & Weston, M. (2018). A new drought monitoring index for a humid region: Case study of Oklahoma in the southern United States. Water, 10(4), 473. https://doi.org/10.3390/w10040473
Bhattacharya, T., Aggarwal, S. P., & Garg, V. (2013). Estimation of water balance components of Chambal River basin using a macroscale hydrology model. International Journal of Scientific and Research Publications, 3(2), 1–7. ISSN 2250-3153.
Dadhwal, V. K., Aggarwal, S. P., & Mishra, N. (2010). Hydrological simulation of Mahanadi river basin and impact of land use/land cover change on surface runoff using a macro scale hydrological model. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(7B), 165-170.
Estrada, L., Garcia, X., Saló-Grau, J., Marcé, R., Munné, A., & Acuña, V. (2024). Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins. Hydrology and Earth System Sciences, 28(24), 5353–5373. https://doi.org/10.5194/hess-28-5353-2024
Gosudarstvennyi vodnyi kadastr [State Water Cadastre]. (1938–1989). Ezhegodnye dannye o rezhime i resursakh poverkhnostnykh vod, Respubliki Kazakhstan [Annual Data on the Regime and Resources of Surface Waters, Republic of Kazakhstan] (Vol. V, Iss. 4: Basseiny rek ozera Balkhash i bestochnykh raionov Tsentralnogo Kazakhstana [Basins of the Balkhash Lake Rivers and Closed Drainage Areas of Central Kazakhstan]). Obninsk: VNIIGMI-MCD.
Gosudarstvennyi vodnyi kadastr [State Water Cadastre]. (1989–2000). Ezhegodnye dannye o rezhime i resursakh poverkhnostnykh vod, Respubliki Kazakhstan [Annual Data on the Regime and Resources of Surface Waters, Republic of Kazakhstan] (Vol. V, Iss. 4: Basseiny rek ozera Balkhash i bestochnykh raionov Tsentralnogo Kazakhstana [Basins of the Balkhash Lake Rivers and Closed Drainage Areas of Central Kazakhstan]). Almaty.
Gosudarstvennyi vodnyi kadastr Respubliki Kazakhstan [State Water Cadastre of the Republic of Kazakhstan]. (2003–2023). Ezhegodnye dannye o rezhime i resursakh poverkhnostnykh vod rek i kanalov [Annual Data on the Regime and Resources of Surface Waters of Rivers and Canals] (Part 1, Iss. 8: Basseiny rek Nura i Sarysu [Basins of the Nura and Sarysu Rivers]). Almaty.
Harding, B. L. (2024). Annual water balance model of the upper Colorado River basin. SSRN. https://doi.org/10.2139/ssrn.5044547
Han, X., Zhu, Y., Wang, X., Wang, Y., Shen, T., & Tang, R. (2024). A coupled regional-scale numerical model for hydrological processes and interactions between groundwater and surface water in a controlled drainage district. Journal of Hydrology, 643, 132036. https://doi.org/10.1016/j.jhydrol.2024.132036
Iofin, Z. K. (2013). Lineino-korrelyatsionnaya model vodnogo balansa [Linear-Correlation Model of Water Balance]. Zhurnal universiteta vodnykh kommunikatsii [Journal of the University of Water Communications], (II(XVIII)), 20–32.
Ismayylov, G. Kh., & Fedorov, V. M. (2011). Prostranstvenno-vremennye zakonomernosti izmenchivosti godovogo vodnogo balansa reki Volga [Spatiotemporal Patterns of Annual Water Balance Variability in the Volga River]. Prirodoobustroistvo [Environmental Engineering], 2, 57–63.
Ismayylova, I. G., & Ratkovich, L. D. (2023). Formirovanie vremennykh ryadov gidrometeorologicheskoi informatsii dlya otsenki izmenchivosti elementov vodnogo balansa [Formation of Hydrometeorological Time Series for Assessing Water Balance Variability]. Gidrotekhnicheskoe stroitelstvo [Hydrotechnical Construction], 11, 20–26.
Ismayylova, I. G., Ismayylov, G. Kh., Murashchenkova, N. V., & Perminov, A. V. (2022). Obosnovanie razvitiya gidrologicheskikh protsessov s ispolzovaniem dinamiko-stokhasticheskogo protsessa [Substantiation of Hydrological Process Development Using Dynamic-Stochastic Modeling]. Prirodoobustroistvo [Environmental Engineering], 5, 74–82. https://doi.org/10.26897/1997-6011-2022-5-74-82
Jin, L., Chen, S., Yang, H., & Zhang, C. (2024). Evaluation and drivers of four evapotranspiration products in the Yellow River Basin. Remote Sensing, 16(11), 1829. https://doi.org/10.3390/rs16111829
Kadochnikova, E. I., & Varlamova, Yu. A. (2023). Statisticheskii analiz prostranstvennykh dannykh: uchebnoe posobie [Statistical Analysis of Spatial Data: A Textbook]. Kazan: Izdatelstvo Kazanskogo universiteta [Kazan University Publishing House].
Keller, R. (1965). Vody i vodnyi balans sushi [Water and the Water Balance of Land]. Moscow: Progress.
Koch, M., & Cherie, N. (2013). SWAT-modeling of the impact of future climate change on the hydrology and the water resources in the upper blue Nile river basin, Ethiopia. In Proceedings of the 6th International Conference on Water Resources and Environment Research (pp. 428–523). Koblenz, Germany.
Koronkevich, N. I., & Zaitseva, I. S. (2005). Polistrukturnyi analiz vodnogo balansa i vodnykh resursov v basseine Volgi [Multi-Structural Analysis of Water Balance and Water Resources in the Volga Basin]. Ukrainskii geograficheskii zhurnal [Ukrainian Geographical Journal], (2), 17–22.
Kudelin, B. I. (1960). Printsipy regionalnoi otsenki estestvennykh resursov podzemnykh vod [Principles of Regional Assessment of Natural Groundwater Resources]. Moscow: Izdatelstvo MGU [Moscow State University Press].
Lvovich, M. I. (1974). Mirovye vodnye resursy i ikh budushchee [Global Water Resources and Their Future]. Moscow: Mysl [Thought Publishing House].
Marinou, P. G., Feloni, E. G., Tzoraki, O., & Baltas, E. A. (2017). An implementation of a water balance model in the Evrotas basin. European Water, 57, 147–154.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulation. Transactions of the ASABE, 50(3), 885–900.
Oldekop, E. M. (1911). Isparenie s poverkhnosti rechnykh basseinov [Evaporation from River Basin Surfaces]. Yuryev.
Oppokov, E. V. (1935). Osadki, stok i isparenie v basseine Dnepra vyshe Kieva [Precipitation, Runoff, and Evaporation in the Dnieper Basin Above Kiev]. V Issledovanie rek SSSR [In Study of the Rivers of the USSR] (Iss. 7, pp. 38–54).
Panagopoulos, A., Arampatzis, G., Kuhr, P., Kunkel, R., Tziritis, E., & Wendland, F. (2015). Area-differentiated modeling of water balance in Pinios River basin, Central Greece. Global NEST Journal, 17(2), 221–235.
Passaretti, S., Mineo, C., Varriale, A., & Cosentino, C. (2022). A technical note on the application of a water budget model at regional scale: A water manager’s approach towards a sustainable water resources management. Water, 14(5), 712. https://doi.org/10.3390/w14050712
Potakhova, I. V. (2015). Ekonometrika: uchebnoe posobie [Econometrics: A Textbook]. Tomsk: Fakultet distantsionnogo obucheniya TUSURa [TUSUR Distance Learning Faculty].
Querner, E. P., Froebrich, J., Gallart, F., Prat, N., Cazemier, M., & Tzoraki, O. (2016). Simulating stream flow variability in temporary streams using a coupled groundwater-surface water model. Hydrological Sciences Journal, 61(1), 146–161.
Resursy poverkhnostnykh vod SSSR [Surface Water Resources of the USSR]. (1966). Tsentralnyi i Yuzhnyi Kazakhstan. Karagandinskaya oblast [Central and Southern Kazakhstan. Karaganda Region] (Vol. 13, Iss. 1). Leningrad: Gidrometeoizdat [Hydrometeorological Publishing House].
Rozhdestvensky, A. V., & Lobanov, A. G. (1984). Posobie po opredeleniyu raschetnykh gidrologicheskikh kharakteristik [Guide for Determining Calculated Hydrological Characteristics]. Leningrad: Gidrometeoizdat [Hydrometeorological Publishing House].
Syed, T. H., Webster, P. J., & Famiglietti, J. S. (2014). Assessing variability of evapotranspiration over the Ganga River basin using water balance computations. Water Resources Research, 50(4), 2551–2565.
Tolika, K., Anagnostopoulou, C., Traboulsi, M., Zaharia, L., Constantin, D. M., Tegoulias, I., & Maheras, P. (2024). Comparative study of the frequencies of atmospheric circulation types at different geopotential levels and their relationship with precipitation in Southern Romania. Atmosphere, 15(9), 027. https://doi.org/10.3390/atmos15091027
Tzoraki, O., Papadoulakis, V., Christodoulou, A., Vozinaki, E., Karalemas, N., Gamvroudis, C., & Nikolaidis, N. P. (2011). Hydrologic modelling of a complex hydrogeologic basin: Evrotas River Basin. In Advances in the Research of Aquatic Environment (pp. 179–186). Springer Berlin Heidelberg.
Vanderkelen, I., van Lipzig, N. P. M., & Thiery, W. (2018). Modelling the water balance of Lake Victoria (East Africa) - Part 1: Observational analysis. Hydrology and Earth System Sciences, 22(22), 5509–5525. https://doi.org/10.5194/hess-22-5509-2018
Velikanov, M. A. (1948). Gidrologiya sushi [Land Hydrology]. Leningrad: Gidrometeoizdat [Hydrometeorological Publishing House].
Voeikov, A. I. (1949). Klimaty zemnogo shara, v osobennosti Rossii [Climates of the Globe, Especially Russia]. V Izbrannye sochineniya [In Selected Works] (Vol. 1). Moscow-Leningrad.
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., & Schewe, J. (2013). The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project framework. Proceedings of the National Academy of Sciences, 111(9), 3228–3232. https://doi.org/10.1073/pnas.1312330110
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Zh. Mustafayev, G. Adilbektegi, K. Mustafayev, K. Abdeshev, G. Saspugayeva, N. Tursynbayev (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.