Integrative analysis of the adaptation of the genus Betula and anthropogenic impact in the forest-steppe landscapes of the North Kazakhstan region


Views: 10 / PDF downloads: 3

Authors

DOI:

https://doi.org/10.32523/2616-6771-2025-153-4-133-147

Keywords:

landscape, anthropogenic pressure, climate variability, Betula pendula (silver birch), Betula pubescens (downy birch), ecosystem resilience, geoinformation technologies

Abstract

This article reveals the physiological and ecological attributes of birch trees adapted to the harsh continental climate of the North Kazakhstan region. The region's landscapes primarily consist of forest-steppe and steppe zones. The northern part is characterized by meadow-forest landscapes, the central part by typical birch forest-steppes, and the southern part by a distinct steppe character. The highest level of forest cover (up to 20%) is observed in the saline plains of the north. This indicator plays a crucial role in maintaining the ecological balance of the region. Twenty types of landscapes have been identified in the region, 13 of which belong to the forest-steppe and 7 to the steppe landscape. Fertile chernozems and birch groves (kolks) are widespread in the accumulative plains. In the denudational, slightly undulating plains, southern chernozems and salt marshes are more common, dominated by fescue-feather grass plant communities. The birch species Betula pendula (silver birch) and Betula pubescens (downy birch) form the central core of the region's phytocenoses and appear in the form of fragmented "forest groves." Their physiological and ecological adaptation features allow them to exist sustainably within the complex continental climate. Comprehensive study and conservation of birch populations are essential for regulating soil-water balance, preserving biodiversity, and increasing socio-economic importance. Ensuring their ecological stability requires special protection measures, including the use of modern geoinformation technologies. This research is considered a vital step toward effective natural resource management and the minimization of degradation processes.

Downloads

Download data is not yet available.

References

Abaturov, Y. D., Zvorykina, K. V., & Ilyushchenko, A. F. (1982). Types of birch forests in the central part of the southern taiga (Tipy berezovykh lesov tsentralnoi chasti yuzhnoi taigi in Russian). https://jyu.finna.fi/Record/vaari.2113588?lng=en-gb

Alekseev, P. V. (1997). Reshaping felling and management basics in pyrogenic birch forests of the Middle Volga region (Rubki pereformirovaniya i osnovy khozyaistva v pirogennykh bereznyakakh Srednego Povolzhya in Russian). Forest Bulletin (Lesnoe khozyaistvo), 6, 19–22.

Amosova, I. B., & Feklistov, P. A. (2009). Analysis of the anatomical structure of birch wood (Analiz anatomicheskogo stroeniya drevesiny berezy in Russian). Forest bulletin (Lesnoi vestnik), 2(65), 16–19.

Angelstam, P. K. (1998). Maintaining and restoring biodiversity in European boreal forests by developing natural disturbance regimes. Journal of Vegetation Science, 9(4), 593–602. https://doi.org/10.2307/3237276

Baisholanov, S. S. (2017). Agro-climatic resources of the North Kazakhstan region: Scientific and applied handbook (Agroklimaticheskie resursy Severo-Kazakhstanskoi oblasti: Nauchno-prikladnoi spravochnik in Russian). https://ingeo.kz/wp-content/uploads/2017/11.pdf

Beck, E. H., Heim, R., & Hansen, J. (2004). Plant resistance to cold stress: Mechanisms and environmental signals triggering frost hardening and dehardening. Journal of Biosciences, 29(4), 449–459. https://doi.org/10.1007/BF02712118

Bolte, A., Ammer, C., Löf, M., Madsen, P., Nabuurs, G. J., Schall, P., Seidel, D., & Rock, J. (2009). Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scandinavian Journal of Forest Research, 24(6), 473–482. https://doi.org/10.1080/02827580903418224

Borovikov, A. M., & Ugolev, B. N. (1989). Wood handbook (Spravochnik po drevesine in Russian). Forest industry (Lesnaya promyshlennost). https://www.booksite.ru/rusles/29.html

Dubois, M., Lindbladh, M., & Felton, A. (2020). Birch distribution and changes in stand structure in Sweden. Forest Ecology and Management, 478, 118517. https://doi.org/10.1016/j.foreco.2020.118517

Galitskii, V. V. (2001). Types of final felling in the forests of the North-West of the European part of Russia (Tipy rubok glavnogo polzovaniya v lesakh Severo-Zapada Evropeiskoi chasti Rossii in Russian) (pp. 115–128), Nauka.

Goncharov, V. F. (2010). Pine forests of the North-West of Russia: Structure, productivity, dynamics (Sosnovye lesa Severo-Zapada Rossii: Struktura, produktivnost, dinamika in Russian) (pp. 142–155), Arkhangelsk.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031

Grigorev, I. V. (2012). Features of growth and development of silver birch seedlings in pine plantations (Osobennosti rosta i razvitiya podrostka berezy ponikloy v kulturakh sosny in Russian). Bulletin of the Volga State University of Technology. Series: Forest. Ecology. Nature Management (Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya: Les. Ekologiya. Prirodopolzovanie), 1, 5–11.

Hetherington, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424(6951), 901–908. https://doi.org/10.1038/nature01843

Kozlovskii, B. I. (1985). Physiology of woody plants (Fiziologiya drevesnykh rastenii in Russian). (pp. 88–102), Lesnaya promyshlennost.

Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., & Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698–709. https://doi.org/10.1016/j.foreco.2009.09.023

Messier, C., Puettmann, K. J., & Coates, K. D. (Eds.). (2013). A guide to the ecosystem management of complex forests (pp. 156–170), Routledge.

Nilsson, U., Fahlvik, N., Johansson, U., Lundström, A., & Rosvall, O. (2011). Simulation of the effect of intensive forest management on forest production in Sweden. Forests, 2(1), 373–393. https://doi.org/10.3390/f2010373

Oksanen, E., Kontunen-Soppela, S., Riikonen, J., & Rousi, M. (2019). Birch as a model species for the acclimation and adaptation of northern forest ecosystems to changing environment. Forest Ecology and Management, 437, 1–14. https://doi.org/10.1016/j.foreco.2019.01.045

Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd ed., pp. 189–205), Academic Press.

Tileuberdi, B. (2022). Modern technologies of forestry (Orman sharuashylygynyn zamanaui tekhnologiyalary in Kazakh). Ministry of Agriculture of Kazakhstan.

Vasilevich, V. I. (1983). Essays on theoretical phytocenology (Ocherki teoreticheskoi fitotsenologii) (pp. 62–75), Nauka.

Wermelinger, B. (2004). Ecology and management of the spruce bark beetle Ips typographus: A review of recent research. Forest Ecology and Management, 202(1–3), 67–82. https://doi.org/10.1016/j.foreco.2004.07.018

Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R., & Arino, O. (2021). ESA WorldCover 10 m 2020 v100 [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.5571936

Zavalishin, A. V. (1995). Ecological bases of forest restoration (Ekologicheskie osnovy vozobnovleniya lesov in Russian) (pp. 104–118), Nauka.

Zimin, I. V. (1980). Biological bases of birch cultivation (Biologicheskie osnovy vyrashchivaniya berezy in Russian) (pp. 54–67), Lesnaya promyshlennost.

Published

2025-12-24

Issue

Section

Geography

Similar Articles

<< < 1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.