Ultrasound-assisted extraction of Alhagi pseudalhagi root and its mathematical modeling
Views: 8 / PDF downloads: 1
DOI:
https://doi.org/10.32523/2616-6771-2025-153-4-30-39Keywords:
ultrasonic extraction, ultrasound power, sonication time, complete three-factor experiment, regression equationAbstract
Currently, research is being conducted to modify and improve extraction methods in several directions, including advancements in technical equipment, substitution of solvents, optimization of extraction conditions, and, in particular, the application of physical factors such as ultrasonic treatment. Among the innovative and promising approaches is the use of ultrasound to extract various biologically active compounds from natural materials.
This article presents the results of a scientific study on the ultrasound- assisted extraction of Alhagi pseudalhagi roots. The chemical composition of the extract was analyzed using gas chromatography–mass spectrometry (GC-MS). A total of 30 chemical compounds were identified, including several valuable biologically active substances. According to the GC-MS analysis, the major components were gentriacontane (18.83%), β-sitosterol (18.13%), and lupeol (11.85%).
The main factors influencing the diffusion of extractive substances from raw materials into the extractant—namely, ultrasonic power, sonication time, and temperature—have been investigated. These factors were used to design a full three-factor experimental plan. Consequently, a mathematical representation of the ultrasound-assisted extraction mechanism was established for further simulation and analysis. The resulting regression equation allows for the evaluation of the influence of these factors on extract yield.
Downloads
References
Abazi Bajrami, D., Marinkovski, M., Lisichkov, K., & Kuvendziev, S. (2023). Kinetic modeling of ultrasound-assisted extraction of bioactive compounds from Helichrysum Arenarium. Biomed J Sci & Tech Res, 50(4), 41935-41943. https://dx.doi.org/10.26717/BJSTR.2023.50.007994
Anaya-Esparza, L. M., Aurora-Vigo, E. F., Villagrán, Z., Rodríguez-Lafitte, E., Ruvalcaba-Gómez, J. M., Solano-Cornejo, M. Á., Zamora-Gasga, V. M., Montalvo-González, E., Gómez-Rodríguez, H., & Aceves-Aldrete, C. E. (2023). Design of experiments for optimizing ultrasound-Assisted extraction of bioactive compounds from plant-based sources. Molecules, 28, 7752. https://doi.org/10.3390/molecules28237752
Assunção, J., Amaro, H. M., Malcata, F. X., & Guedes, A. C. (2023). Factorial optimization of Ultrasound assisted extraction of Phycocyanin from Synechocystis salina: Towards a Biorefinery Approach. Life, 12, 1389. https://doi.org/10.3390/life12091389
Awad, A. B., & Fink, C. S. (2000). Phytosterols as anticancer dietary components: evidence and mechanism of action 1,2. J. Nutr, 130(9), 2127-2130. https://doi.org/10.1093/jn/130.9.2127
Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013).Techniques for extraction of bioactive compounds from plant materials: A review. J Food Eng, 117(4). 426-436. https://doi.org/10.1016/j.jfoodeng.2013.01.014
Dzah, C. S., Duan, Y., Zhang, H., Wen, C., Zhang, J., Chen, G., & Ma, H. (2020). The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Biosci, 35, 100547. https://doi.org/10.1016/j.fbio.2020.100547
Kwaw, E., Ma, Y., Tchabo, W., Apaliya, M. T., Sackey, A. S., Wu, M., & Xiao, L. (2018). Impact of ultrasonication and pulsed light treatments on phenolics concentration and antioxidant activities of lactic-acid-fermented mulberry juice, LWT, 92, 61-66. https://doi.org/10.1016/j.lwt.2018.02.016
Li, Y., Li, S. J., Zhang, J. J., Zhao, C. N., & Li, H. B. (2017). Microwave-assisted extraction of natural antioxidants from the exotic Gordonia axillaris fruit optimization asnd identification of phenolic compounds. Molecules, 22, 1481. https://doi.org/10.3390/molecules22091481
Liu, K., Zhang, X., Xie, L., Deng, M., Chen, H., Song, J., Long, J., Li, X., & Luo, J. (2021). Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. J Pharmacol Res, 164, 105373. https://doi.org/10.1016/j.phrs.2020.105373
Liu, Y., She, X. R, Huang, J. B., Liu, M. C., & Zhan M. E. (2018). Ultrasonic-extraction of phenolic compounds from Phyllanthus urinaria: optimization model and antioxidant activity. Food Sci Technol, 38, 286–293. https://doi.org/10.1590/1678-457X.21617
Lytovchenko, A., Beleggi, R., Schauer, N., Isaacson, T., Leuendorf, J. E., Rose, J., & Fernie, A. R. (2009). Application of GC-MS for detection of lipophilic compounds in diverse plant tissues. Plant Methods, 5(4). https://doi.org/10.1186/1746-4811-5-4
Mason, T. J., Chemat, F., & Vinatoru, M. (2011). The extraction of natural products using ultrasound or microwaves. Curr Org Chem, 15, 237-247. http://dx.doi.org/10.2174/138527211793979871
Mehmood, A., Ishaq, M., Zhao, L., Yaqoob, S., Safdar, B., Nadeem, M., Munir, M., & Wang, C. (2019). Impact of ultrasound and conventional extraction techniques on bioactive compounds and biological activities of blue butterfly pea flower (Clitoria ternatea L.), Ultrason Sonochem, 51, 12-19. https://doi.org/10.1016/j.ultsonch.2018.10.013
Orio, L., Alexandru, L., Cravotto, G., Mantegna, S., & Barge, A. (2012). UAE, MAE, SFE-CO2 and classical methods for the extraction of Mitragyna speciosa leaves. Ultrason Sonochem, 19, 591-595. https://doi.org/10.1016/j.ultsonch.2011.10.001
Rashad, S., El-Chaghaby, G., Lima, E., & Simoes, G. (2023). Optimizing the ultrasonic-assisted extraction of antioxidants from Ulva lactuca algal biomass using factorial design. Biomass convers bior, 13, 5681–5690. https://doi.org/10.1007/s13399-021-01516-8
Reche, C., Rosselló, C., Umaña, M. M., Eim, V., & Simal, S. (2021). Mathematical modelling of ultrasound-assisted extraction kinetics of bioactive compounds from artichoke by-products. Foods, 10, 931. https://doi.org/10.3390/foods10050931
Rostagno, M. A., Palma, M., & Barroso, C. G. (2003). Ultrasound-assisted extraction of soy isoflavones. J Chromatogr, 1012, 119–128. https://doi.org/10.1016/S0021-9673(03)01184-1
Sala-Vila, A., Fleming, J., Kris-Etherton, P., & Ros, E. (2022). Impact of α-linolenic acid, the vegetable ω-3 fatty acid, on cardiovascular disease and cognition. Adv Nutr, 13(5), 1584-1602. https://doi.org/10.1093/advances/nmac016
Shah Buddin, M. M. H., Amat Rithuan, M. Z., Aiman Surni, M. S., Mhd Jamal, N. H., & Faiznur, M. F. (2018). Ultrasonic assisted extraction (UAE) of Moringa oleifera seed oil: Kinetic study. ASM Sci J, 11(3), 158-166. http://dx.doi.org/10.32802/asmscj.2019.174
Shen, L., Pang, S., Zhong, M., Sun, Y., Qayum, A., Liu, Y., Rashid, A., Xu, B., Liang, Q., Ma, H., & Ren, X. (2023). A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem, 13, 1350-4177. https://doi.org/10.1016/j.ultsonch.2023.106646
Srivastava, B., Sharma, H., Dey Y. N., Wanjari, M. M., & Jadhav, A. D. (2014). Alhagi pseudalhagi: a review of its phytochemistry, pharmacology, folklore claims and Ayurvedic studies. Jnter J Herbalmedicine, 2(2), 47-51.
Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem, 8, 303-313. https://doi.org/10.1016/S1350-4177(01)00071-2
Uvidia Armijo, L. A., García Cabezas, E. F., Moyano Alulema, J. C., & Millán Ramos, D. H. (2025). Mathematical modeling of the extraction of bioactive compounds present in the leaves of Annona muricata L. Afr J Biomed Res, 28, 598-603 https://doi.org/10.53555/AJBR.v28i1S.6173
Wen, C. T., Zhang, J. X., Zhang, H. H., Dzah, C. S., Zandile, M., Duan, Y. Q., Ma, H. L., & Luo, X. P. (2018). Advances in ultrasound assisted extraction of bioactive compounds from cash crops - A review. Ultrason Sonochem, 48, 538–549. https://doi.org/10.1016/j.ultsonch.2018.07.018
Zhu, Y., Sun, J., Xu, D., Wang, S., Yuan, Y., & Cao, Y. (2018). Investigation of (+)-catechin stability under ultrasonic treatment and its degradation kinetic modeling. J. Food Process Eng, 41, 12904. https://doi.org/10.1111/jfpe.12904
Downloads
Published
Issue
Section
License
Copyright (c) 2025 A. Kokorayeva, G. Baisalova, R. Sergibayev, A. Taltenov, B. Torsykbaeva, P. Kuzhatova, S. Sansyzbay (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






