Co-pyrolysis of oil sludge and additives: an analytical review


Views: 633 / PDF downloads: 154

Authors

DOI:

https://doi.org/10.32523/2616-6771-2025-151-2-11-34

Keywords:

oil sludge, additives, waste, pyrolysis, oil, gas, solid residue

Abstract

As a by-product of the oil industry, oil sludge has created a serious problem because it contains a large number of pollutants and therefore poses a significant threat to the ecological safety of the environment and human health. On the other hand, most of the oil sludge is crude oil, which has great value for processing. Therefore, the choice of the method for processing and recycling oil sludge is of paramount importance and among the many existing methods, pyrolysis stands out for its reasonable distribution of products and lower emissions of pollutants. This review article presents the latest achievements in the field of co-pyrolysis of oil sludge with various types of raw materials/waste (agricultural biomass, wood and rubber waste, plastic, etc.) to obtain such valuable products as oil and gas, as well as a solid residue that can be used to obtain adsorbents, semi-coke, catalysts, agents for soil reclamation, etc. The main advantages of co-pyrolysis of oil sludge with additives and their effect on the efficiency of the co-pyrolysis process are described. An analysis was conducted of the influence of various additives (microalgae, rice husk, wood sawdust, fly ash, etc.) on the yield of co-pyrolysis products depending on various chemical and technological conditions of co-pyrolysis (temperature and time of the process, type of reactor, mass ratio of oil sludge/additive, etc.).

Downloads

Download data is not yet available.

References

Abnisa, F., Wan Daud, W.M.A. (2014). A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Convers Manag 87, 71-85. https://doi.org/10.1016/j.enconman.2014.07.007

Ahmed, A., Muhammad, S., Rahayu, S., Hussain, M., Abid, F., Surendar, M., Young-Kwon, P. (2020). Sawdust pyrolysis from the furniture industry in an auger pyrolysis reactor system for biochar and bio-oil production. Energy Convers Manag 226, 113502. https://doi.org/10.1016/j.enconman.2020.113502

Aimin, S.C. (2015). High Quality Oil Recovery from Oil Sludge Employing a Pyrolysis Process with Oil Sludge Ash Catalyst. Int J Waste Resour. 05(02). https://doi.org/10.4172/2252-5211.1000176

Akhtar, J., Saidina, A.N. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew. Sustain Energy Rev 16(7), 5101-5109. https://doi.org/10.1016/j.rser.2012.05.033

Al-Zahrani, S.M., Putra, M.D. (2013). Used lubricating oil regeneration by various solvent extraction techniques. J Ind Eng Chem 19(2), 536-539. https://doi.org/10.1016/j.jiec.2012.09.007

Assumpção, F.N., Carbonell, L.C., Marques, M.M. (2011). Co-pyrolysis of polypropylene waste with Brazilian heavy oil. J. Environ. Sci Heal Part A 46(5), 461-464. https://doi.org/10.1080/10934529.2011.551724

Bowles, A.J., Nievas, Á., Fowler, G.D. (2023). Consecutive recovery of recovered carbon black and limonene from waste tyres by thermal pyrolysis in a rotary kiln. Sustain Chem Pharm 32, 100972. https://doi.org/10.1016/j.scp.2023.100972

Bridgwater, A.V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 38, 68-94. https://doi.org/10.1016/J.BIOMBIOE.2011.01.048

Chang, C.-Y., Shie, J.-L., Lin, J.-P., Wu, C.-H., Lee, D.-J., Chang, C.-F. (2000). Major Products Obtained from the Pyrolysis of Oil Sludge. Energy & Fuels 14(6), 1176-1183. https://doi.org/10.1021/ef0000532

Chang, C.Y., Shie, J.L., Lin, J.P., Wu, C.H., Lee, D.J., Chang, C.F. (2000). Major products obtained from the pyrolysis of oil sludge. Energy Fuel 14, 1176-1183. https://doi.org/10.1021/ef0000532

Cao, J., Liaw, S.B., Long, Y., Yu, Y., Wu, H. (2020). Formation of reaction intermediates and primary volatiles during acid-catalysed fast pyrolysis of cellulose in a wire-mesh reactor. P Combust Inst 38, 4301-4308. https://doi.org/10.1016/j.proci.2020.07.035

Chen, L., Zhang, X.D., Sun, L.Z., Xu, H.J., Si, H.Y., Mei, N. (2016). Study on the fast pyrolysis of oil sludge and its product distribution by PY-GC/MS. Energy Fuel 30, 10222-10227. https://doi.org/10.1021/acs.energyfuels.6b01991

Chen, G., Li, J., Li, K., Lin, F., Tian, W., Che, L., Yan, B., Ma, W., Song, Y. (2020). Nitrogen, sulfur, chlorine containing pollutants releasing characteristics during pyrolysis and combustion of oily sludge. Fuel 273, 117772. https://doi.org/10.1016/j.fuel.2020.117772

Chen, Y., Zhang, L., Zhang, Y., Li, A. (2019). Pressurized pyrolysis of sewage sludge: Process performance and products characterization. J Anal Appl Pyrolysis 139, 205-212. https://doi.org/10.1016/j.jaap.2019.02.007

Chen, W., Chen, Y., Yang, H., Xia, M., Li, K., Chen, X., Chen, H. (2017). Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect. Bioresour Technol 245, 860-868. https://doi.org/10.1016/j.biortech.2017.09.022

Chen, Z., Yu, G., Wang, Y., Liu, X., Wang, X. (2019). Research on synergistically hydrothermal treatment of municipal solid waste incineration fly ash and sewage sludge. Waste Manag 100, 182-190. https://doi.org/10.1016/j.wasman.2019.09.006

Chen, C., Ling, H., Qiu, S., Huang, X., Fan, D., Zhao, J. (2022). Microwave catalytic co-pyrolysis of Chlorella vulgaris and oily sludge: Characteristics and bio-oil analysis. Bioresour Technol 360, 127550. https://doi.org/10.1016/j.biortech.2022.127550

Chen, Y.R. (2016). Microwave pyrolysis of oily sludge with activated carbon. Environ Technol (United Kingdom) 37(24), 3139-3145. https://doi.org/10.1080/09593330.2016.1178333

Cheng, S., Takahashi, F., Gao, N., Yoshikawa, K., Li, A. (2016). Evaluation of Oil Sludge Ash as a Solid Heat Carrier in the Pyrolysis Process of Oil Sludge for Oil Production. Energy & Fuels 30(7), 5970-5979. https://doi.org/10.1021/acs.energyfuels.6b00648

Cheng, S., Wang, Y., Fumitake, T., Kouji, T., Li, A., Kunio, Y. (2017). Effect of steam and oil sludge ash additive on the products of oil sludge pyrolysis. Appl Energy 185, 146-157. https://doi.org/10.1016/j.apenergy.2016.10.055

Cheng, S., Wang, Y.H., Fumitake, T., Kouji, T., Li, A.M., Kunio, Y. (2017). Effect of steam and oil sludge ash additive on the products of oil sludge pyrolysis. Appl Energy 185, 146-157. https://doi.org/10.1016/j.apenergy.2016.10.055

Chiang, W.-F., Fang, H.-Y., Wu, C.-H., Chang, C.-Y., Chang, Y.-M., Shie, J.-L. (2008). Pyrolysis Kinetics of Rice Husk in Different Oxygen Concentrations. J Environ Eng 134(4), 316-325. https://doi.org/10.1061/(ASCE)0733-9372(2008)134:4(316)

Di, X., Pan, H., Li, D., Hu, H., Hu, Z., Yan, Y. (2021). Thermochemical Recycling of Oily Sludge by Catalytic Pyrolysis: A Review. Scanning, 1131858. https://doi.org/10.1155/2021/1131858

Doja, S., Pillari, L.K., Bichler, L. (2022). Processing and activation of tire-derived char: A review. Renew Sustain Energy Rev 155, 111860. https://doi.org/10.1016/j.rser.2021.111860

Du, M., Li, J., Wang, F., Li, X., Yu, T., Qu, C. (2021). The sludge-based adsorbent from oily sludge and sawdust: preparation and optimization. Environ Technol 42(20), 3164-3177. https://doi.org/10.1080/09593330.2020.1725138

Ermagambet, B.T., Kasenov, B.K., Nurgaliyev, N.U., Kazankapova, M.K., Kasenova, Z.M., Zikirina, A.M. (2018). Adsorbent Production Using Oil Shale from the Kendyrlyk Deposit. Solid Fuel Chem 52(5), 302-307. https://doi.org/10.3103/S036152191805004X

Ermagambet, B.T., Nurgaliyev, N.U., Kazankapova, M.K., Kasenova, Z.M., Abylgazina, L.D. (2019). Smokeless fuel production – semi-coke from coal. NEWS Natl Acad Sci Repub Kazakhstan 2(434), 144-149. https://doi.org/10.32014/2019.2518-170X.48

Prashanth, F.P., Shravani, B., Vinu, R., Lavanya, M., Prabu, R.V. (2021). Production of diesel range hydrocarbons from crude oil sludge via microwave-assisted pyrolysis and catalytic upgradation. Process Saf Environ Prot 146, 383-395. https://doi.org/10.1016/j.psep.2020.08.025

Fu, Y., Que, Z., Shi, J., Ai, X., Zou, W. (2022). Thermal behavior and gas products of cold rolling oily sludge by TG-MS and Py-EGA/MS. Energy Reports 8, 763-773. https://doi.org/10.1016/j.egyr.2022.02.012

Gao, N., Duan, Y., Li, Z., Quan, C., Yoshikawa, K. (2021). Hydrothermal treatment combined with in-situ mechanical compression for floated oily sludge dewatering. J Hazard Mater 402, 124173. https://doi.org/10.1016/j.jhazmat.2020.124173

Gao, N., Li, J., Quan, C., Tan, H. (2020). Product property and environmental risk assessment of heavy metals during pyrolysis of oily sludge with fly ash additive. Fuel 266, 117090. https://doi.org/10.1016/j.fuel.2020.117090

Gao, N., Kamran, K., Ma, Z., Quan, C. (2021). Investigation of product distribution from co-pyrolysis of side wall waste tire and off-shore oil sludge. Fuel 285, 119036. https://doi.org/10.1016/j.fuel.2020.119036

Gong, Z., Wang, Z., Wang, Z., Fang, P., Meng, F. (2019). Study on the migration characteristics of nitrogen and sulfur during co-combustion of oil sludge char and microalgae residue. Fuel 238, 1-9. https://doi.org/10.1016/j.fuel.2018.10.087

Gong, Z., Liu, C., Wang, M., Wang, Z., Li, X. (2020). Experimental study on catalytic pyrolysis of oil sludge under mild temperature. Sci Total Environ 708, 135039. https://doi.org/10.1016/j.scitotenv.2019.135039

Gong, Z.Q., Du, A.X., Wang, Z.B., Fang, P.W., Li, X.Y. (2017). Experimental study on pyrolysis characteristics of oil sludge with a tube furnace reactor. Energy Fuel 31, 8102-8108. https://doi.org/10.1021/acs.energyfuels.7b01363

Guillain, M., Fairouz, K., Mar, S.R., Monique, F., Jacques, L. (2009). Attrition-free pyrolysis to produce bio-oil and char. Bioresour Technol 100(23), 6069-6075. https://doi.org/10.1016/j.biortech.2009.06.085

Haghanimanesh, M., Baniasadi, E., Kerdabadi, K.J., Yu, X. (2022). Exergoeconomic analysis of a novel trigeneration cycle based on steel slag heat recovery and biogas production in steelmaking plants. Energy Convers Manag 263, 115688. https://doi.org/10.1016/j.enconman.2022.115688

Hamilton, J., Seyedmahmoudian, M., Jamei, E., Horan, B., Tojcevski, A. (2020). A systematic review of solar driven waste to fuel pyrolysis technology for the Australian state of Victoria. Energy Reports 6, 3212-3229. https://doi.org/10.1016/j.egyr.2020.11.039

Han, L., Li, J., Qu, C., Shao, Z., Yu, T., Yang, B. (2022). Recent Progress in Sludge Co-Pyrolysis Technology. Sustain 14(13), 1-12. https://doi.org/10.3390/su14137574

Hasan, A.M.A., Kamal, R.S., Farag, R.K., Abdel-raouf, M.E. (2024). Petroleum sludge formation and its treatment methodologies: a review. Environ Sci Pollut Res 31(6), 8369-8386. https://doi.org/10.1007/s11356-023-31674-3

Ho, C.C., Show, M.C., Ong, S.H. (1992). Recovery of residual oil from the centrifuge sludge of a palm oil mill: Effect of enzyme digestion and surfactant treatment. J Am Oil Chem Soc 69(3), 276-282. https://doi.org/10.1007/BF02635901

Hu, G., Li, J., Zeng, G. (2013). Recent development in the treatment of oily sludge from petroleum industry: A review J Hazard Mater 261, 470-490. https://doi.org/10.1016/j.jhazmat.2013.07.069

Hu, G., Li, J., Hou, H. (2015). A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge. J Hazard Mater 283, 832-840. https://doi.org/10.1016/j.jhazmat.2014.10.028

Hu, G., Li, J., Zhang, X., Li, Y. (2017). Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology. J Environ Manage 192, 234-242. https://doi.org/10.1016/j.jenvman.2017.01.069

Hui, K., Tang, J., Lu, H., Xi, B., Qu, C., Li, J. (2020). Status and prospect of oil recovery from oily sludge: A review. Arab J Chem 13(8), 6523-6543. https://doi.org/10.1016/j.arabjc.2020.06.009

Jeon, M.J., Jeon, J.-K., Suh, D.J., Park, S.H., Sa, Y.J., Joo, S.H., Park, Y.-K. (2013). Catalytic pyrolysis of biomass components over mesoporous catalysts using Py-GC/MS. Catal Today 204, 170-178. https://doi.org/10.1016/J.CATTOD.2012.07.039

Johnson, O.A., Affam, A.C. (2019). Petroleum sludge treatment and disposal: A review. Environ Eng Res 24(2), 191-201. https://doi.org/10.4491/EER.2018.134

Jones, I., Zhu, M., Zhang, J., Zhang, Z., Preciado-Hernandez, J., Gao, J., Zhang, D. (2021). The application of spent tyre activated carbons as low-cost environmental pollution adsorbents: A technical review. J Clean Prod 312, 127566. https://doi.org/10.1016/j.jclepro.2021.127566

Ju, Y., Zhu, Y., Zhou, H., Ge, S., Xie, H. (2021). Microwave pyrolysis and its applications to the in situ recovery and conversion of oil from tar-rich coal: An overview on fundamentals, methods, and challenges. Energy Reports 7, 523-536. https://doi.org/10.1016/j.egyr.2021.01.021

Kasenova, Z.М., Yermagambet, B.T., Nurgaliyev, N.U., Kazankapova, М.K. (2018). Investigation of the Thermal Decomposition Process of Kendyrlik Deposit Oil Shales. News Natl Acad Sci Repub Kazakhstan Ser Geol Tech Sci 3(429), 189-196.

Kim, J.H., Oh, J.I., Baek, K., Park, Y.K., Zhang, M., Lee, J., Kwon, E.E. (2019). Thermolysis of crude oil sludge using CO2 as reactive gas medium. Energy Convers Manag 186, 393-400. https://doi.org/10.1016/j.enconman.2019.02.070

Kuśmierek, K., Świątkowski, A., Kotkowski, T., Cherbański, R., Molga, E. (2021). Adsorption on activated carbons from end-of-life tyre pyrolysis for environmental applications. Part I. preparation of adsorbent and adsorption from gas phase. J Anal Appl Pyrolysis 157, 105205. https://doi.org/10.1016/j.jaap.2021.105205

Kuśmierek, K., Świątkowski, A., Kotkowski, T., Cherbański, R., Molga, E. (2021). Adsorption on activated carbons from end-of-life tyre pyrolysis for environmental applications. Part II. Adsorption from aqueous phase. J Anal Appl Pyrolysis 158, 105206. https://doi.org/10.1016/j.jaap.2021.105206

Kwon, E.E., Kim, S., Lee, J. (2019). Pyrolysis of waste feedstocks in CO2 for effective energy recovery and waste treatment. J CO2 Util 31, 173-180. https://doi.org/10.1016/j.jcou.2019.03.015

Li, F.Z., Zhang, Y.P., Wang, S., Li, G.B., Yue, X.P., Zhong, D.X., Chen, C.H., Shen, K. (2020). Insight into ex-situ thermal desorption of soils contaminated with petroleum via carbon number-based fraction approach. Chem Eng J 385, 123946. https://doi.org/10.1016/j.cej.2019.123946

Li, J., Lin, F., Xiang, L., Zheng, F., Che, L., Tian, W., Guo, X., Yan, B., Song, Y., Chen, G. (2021). Hazardous elements flow during pyrolysis of oily sludge. J Hazard Mater 409, 124986. https://doi.org/10.1016/j.jhazmat.2020.124986

da Silva, L.J., Alves, F. C., de França, F. P. (2012). A review of the technological solutions for the treatment of oily sludges from petroleum refineries. Waste Manag Res J a Sustain Circ Econ 30(10), 1016-1030. https://doi.org/10.1177/0734242X12448517

Li, J., Lin, F., Li, K., Zheng, F., Yan, B., Che, L., Tian, W., Chen, G., Yoshikawa, K. (2021). A critical review on energy recovery and non-hazardous disposal of oily sludge from petroleum industry by pyrolysis. J Hazard Mater 406, 124706. https://doi.org/10.1016/j.jhazmat.2020.124706

Li, Q., Gao, Y., Ji, G., Chen, C., Li, A. (2020). Evaluation of pyrolysis residue of oil sludge for recycling as bed material. Can J Chem Eng 98(2), 465-474. https://doi.org/10.1002/cjce.23618

Li, X.Y., Yang, X.X., Cheng, G., Feng, H.Q., Liu, X.J., Ma, Y.F. (2011). Experimental Study on Co-Pyrolysis of Oil Sludge and Coal. Adv Mater Res 356–360, 2515-2519. https://doi.org/10.4028/www.scientific.net/AMR.356-360.2515

Li, T., Su, T., Wang, J., Zhu, S., Zhang, Y., Geng, Z., Wang, X., Gao, Y. (2023). Simultaneous removal of sulfate and nitrate from real high-salt flue gas wastewater concentrate via a waste heat crystallization route. J Clean Prod 382, 135262. https://doi.org/10.1016/j.jclepro.2022.135262

Lin, B., Wang, J., Huang, Q., Ali, M., Chi, Y. (2017). Aromatic recovery from distillate oil of oily sludge through catalytic pyrolysis over Zn modified HZSM-5 zeolites. J Anal Appl Pyrolysis 128, 291-303. https://doi.org/10.1016/j.jaap.2017.09.021

Lin, B., Huang, Q., Chi, Y. (2018). Co-pyrolysis of oily sludge and rice husk for improving pyrolysis oil quality. Fuel Process Technol 177, 275-282. https://doi.org/10.1016/j.fuproc.2018.05.002

Lin, B.C., Huang, Q.X., Ali, M., Wang, F., Chi, Y., Yan, J.H. (2019). Continuous catalytic pyrolysis of oily sludge using U-shape reactor for producing saturates-enriched light oil. P Combust Inst 37(3), 3101-3108. https://www.sciencedirect.com/science/article/abs/pii/S1540748918301494?via%3Dihub

Lin, F., Zheng, F., Li, J., Sun, B., Che, L., Yan, B., Chen, G. (2022). Catalytic pyrolysis of oily sludge with iron-containing waste for production of high-quality oil and H2-rich gas. Fuel 326, 124995. https://doi.org/10.1016/j.fuel.2022.124995

Liu, Y., Yu, H., Jiang, Z., Song, Y., Zhang, T., Siyal, A.A., Dai, J., Biab, X., Fua, J., Ao, W., Zhou, C., Wang, L., Li, X., Jin, X., Teng, D., Fang, J. (2021). Microwave pyrolysis of oily sludge under different control modes. J Hazard Mater 416, 125887. https://doi.org/10.1016/j.jhazmat.2021.125887

Liu, X., Yao, T., Lai, R., Xiu, J., Huang, L., Sun, S. (2019). Recovery of crude oil from oily sludge in an oilfield by sophorolipid. Pet Sci Technol 37(13), 1582-1588. https://doi.org/10.1080/10916466.2019.1594286

Liu, J., Yu, Y., Zhu, S., Yang, J., Song, J., Fan, W., Yu, H., Bian, D., Huo, M. (2018). Synthesis and characterization of a magnetic adsorbent from negatively-valued iron mud for methylene blue adsorption. PLoS One 13(2), e0191229. https://doi.org/10.1371/journal.pone.0191229

Liu, Y., Liu, Y., Khan, A., Wang, Z., Chen, Y., Zhu, S., Sun, T., Lian, D., Yu, H. (2020). Upcycling of Electroplating Sludge to Prepare Erdite-Bearing Nanorods for the Adsorption of Heavy Metals from Electroplating Wastewater Effluent. Water 12(4), 1027. https://doi.org/10.3390/w12041027

Lee, S.-R., Lee, J., Lee, T., Tsang, Y.F., Jeong, K.-H., Oh, J.-I., Kwon, E.E. (2017). Strategic use of CO2 for co-pyrolysis of swine manure and coal for energy recovery and waste disposal. J CO2 Util 22, 110-116. https://doi.org/10.1016/j.jcou.2017.09.018

Lee, T., Nam, I.H., Kim, J.H., Zhang, M., Jeong, T.Y., Baek, K., Kwon, E.E. (2018). The enhanced thermolysis of heavy oil contaminated soil using CO2 for soil remediation and energy recovery. J CO2 Util 28, 367-373. https://doi.org/10.1016/j.jcou.2018.10.017

Al-Doury, M.M.I. (2019). Treatment of oily sludge using solvent extraction. Petroleum Science and Technology 37(2), 190-196. https://doi.org/10.1080/10916466.2018.1533859

Mettler, M.S., Vlachos, D.G., Dauenhauer, P.J. (2012). Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy & Environmental Science 5, 7797-7809. https://doi.org/10.1039/C2EE21679E

Ma, M., Xu, D., Zhi, Y., Yang, W., Duan, P., Wu, Z. (2022). Co-pyrolysis re-use of sludge and biomass waste: Development, kinetics, synergistic mechanism and industrialization. Journal of Analytical and Applied Pyrolysis 168, 105746. https://doi.org/10.1016/j.jaap.2022.105746

Adhikari, S. M., Shakya, R., Wang, K., Dayton, D., Lehrich, M., Steven, E. T. (2016). Effect of Alkali and Alkaline Earth Metals on in-Situ Catalytic Fast Pyrolysis of Lignocellulosic Biomass: A Microreactor Study. Energy & Fuels 30(4), 3045-3056. https://doi.org/10.1021/acs.energyfuels.5b02984

Ma, W.C., Rajput, G., Pan, M.H., Lin, F.W., Zhong, L., Chen, G.Y. (2019). Pyrolysis of typical MSW components by Py-GC/MS and TG-FTIR. Fuel. 251, 693-708. https://doi.org/10.1016/j.fuel.2019.04.069

Martínez, J.D., Puy, N., Murillo, R., García, T., Navarro, M.V., Mastral, A.M. (2013). Waste tyre pyrolysis – A review. Renewable and Sustainable Energy Reviews 23, 179-213. https://doi.org/10.1016/j.rser.2013.02.038

Mettler, M.S., Vlachos, D.G., Dauenhauer, P.J. (2012). Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy & Environmental Science 5, 7797-7809. https://doi.org/10.1039/C2EE21679E

Milato, J.V., França, R.J., Rocha, A.S., M.R., Calderari, C.M. (2020). Catalytic co-pyrolysis of oil sludge with HDPE to obtain paraffinic products over HUSY zeolites prepared by dealumination and desilication. Journal of Analytical and Applied Pyrolysis 151, 104928. https://doi.org/10.1016/j.jaap.2020.104928

Miskolczi, N. (2013). Co-pyrolysis of petroleum based waste HDPE, poly-lactic-acid biopolymer and organic waste. Journal of Industrial and Engineering Chemistry 19(5), 1549-1559. https://doi.org/10.1016/j.jiec.2013.01.022

Nie, F., Li, Y., Tong, K., Wu, B., Zhang, M., Ren, W., Xie, S., Li, X. (2020). Volatile evolution during thermal treatment of oily sludge from a petroleum refinery wastewater treatment Plant: TGA-MS, Py-GC(EGA)/MS and kinetics study. Fuel 278, 118332. https://doi.org/10.1016/j.fuel.2020.118332

Niu, A., Sun, X., Lin,C. (2022). Trend in Research on Characterization, Environmental Impacts and Treatment of Oily Sludge: A Systematic Review. Molecules 27(22), 1-24. https://doi.org/10.3390/molecules27227795

Önenç, S., Brebu, M., Vasile, C., Yanik, J. (2012). Copyrolysis of scrap tires with oily wastes. Journal of Analytical and Applied Pyrolysis 94, 184-189. https://doi.org/10.1016/j.jaap.2011.12.0

Park, S., Jae, J., Farooq, A., Eilhann, E.K., Park, E.D., Ha, J.-M., Jung, S.-C. Park, Y.-K. (2019). Continuous pyrolysis of organosolv lignin and application of biochar on gasification of high density polyethylene. Applied Energy 255, 113801. https://doi.org/10.1016/j.apenergy.2019.113801

Qu, Y., Li, A.M., Wang, D., Zhang, L., Ji, G.Z. (2019). Kinetic study of the effect of in--situ mineral solids on pyrolysis process of oil sludge. Chemical Engineering Journal 374, 338-346. https://doi.org/ 10.1016/j.cej.2019.05.183

Qu, Z., Dong, G., Zhu, S., Yu, Y., Huo, M., Xu, K., Liu, M. (2020). Recycling of groundwater treatment sludge to prepare nano-rod erdite particles for tetracycline adsorption. Journal of Cleaner Production. Journal of Cleaner Production 257, 120462. https://doi.org/10.1016/j.jclepro.2020.120462

Quan, C., Zhang, G., Xu, L., Wang, J., Gao, N. (2022). Improvement of the pyrolysis products of oily sludge: Catalysts and catalytic process. J Energy Inst 104, 67-79. https://doi.org/10.1016/j.joei.2022.07.004

Quek, A., Vijayaraghavan, K., Balasubramanian, R. (2011). Methylene Blue Sorption onto Oxygenated Pyrolytic Tire Char: Equilibrium and Kinetic Studies. J Environ Eng 137(9), 833-841. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000387

Qin, L., Han, J., He, X., Zhan, Y., Yu, F. (2015). Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor. J Environ Manag 154, 177-182. https://doi.org/10.1016/j.jenvman.2015.02.030

Sajadi, M., Mokhtarani, N. (2023). Catalytic pyrolysis of oil sludge using the nano alumina powder. Energy 270, 126954. https://doi.org/10.1016/j.energy.2023.126954

Sankaran, S., Pandey, S., Sumathy, K. (1998). Experimental investigation on waste heat recovery by refinery oil sludge incineration using fluidised‐bed technique. J Environ Sci Heal Part A 33(5), 829-845. https://doi.org/10.1080/10934529809376764

Santos, J., Jahangiri, H., Bashir, M.A., Hornung, A., Ouadi, M. (2020). The Upgrading of Bio-Oil from the Intermediate Pyrolysis of Waste Biomass Using Steel Slag as a Catalyst. ACS Sustain Chem Eng 8(50), 18420-18432. https://doi.org/10.1021/acssuschemeng.0c05536

Shen, Y., Chen, X., Wang, J., Ge, X., Chen, M. (2016). Oil sludge recycling by ash-catalyzed pyrolysis-reforming processes. Fuel 182, 871-878. https://doi.org/10.1016/j.fuel.2016.05.102

Shie, J.-L., Lin, J.-P., Chang, C.-Y., Shih, S.-M., Lee, D.-J., Wu, C.-H. (2004). Pyrolysis of oil sludge with additives of catalytic solid wastes. J Anal Appl Pyrolysis 71(2), 695-707. https://doi.org/10.1016/j.jaap.2003.10.001

Silva, D.C., Silva, A.A., Melo, C.F., Marques, R.C. (2017). Production of oil with potential energetic use by catalytic co-pyrolysis of oil sludge from offshore petroleum industry. J. Anal Appl Pyrolysis 124, 290-297. https://doi.org/10.1016/j.jaap.2017.01.021

Siva, M., Onenc, S., Uçar, S., Yanik, J. (2013). Influence of oily wastes on the pyrolysis of scrap tire. Energy Convers Manag 75, 474-481. https://doi.org/10.1016/j.enconman.2013.06.055

Song, Q., Zhao, H.Y., Jia, J.W., Zhang, F., Wang, Z.P., Lv, W., Yang, L., Zhang, W., Zhang, Y. Shu X. (2019). Characterization of the products obtained by pyrolysis of oil sludge with steel slag in a continuous pyrolysis-magnetic separation reactor. Fuel 255, 115711. https://doi.org/10.1016/j.fuel.2019.115711

Suelves, I., Lázaro, M.J., Diez, M.A., Moliner, R. (2002). Characterization of Chars Obtained from Co-pyrolysis of Coal and Petroleum Residues. Energy & Fuels 16(4), 878-886. https://doi.org/10.1021/ef010264m

Sun, B., Huo, J., Liu, H., Che,D., Guo,S. (2023). Elucidation of synergistic effects in straw/sludge co-pyrolysis through gaseous product monitoring and biochar analysis. J Energy Inst 106, 101151. https://doi.org/10.1016/j.joei.2022.11.011

Sun, Y., Seetharaman, S., Zhang, Z. (2018). Integrating biomass pyrolysis with waste heat recovery from hot slags via extending the C-loops: Product yields and roles of slags. Energy 149, 792-803. https://doi.org/10.1016/j.energy.2018.02.119

Suntivarakorn, R., Treedet, W., Singbua, P., Teeramaetawat, N. (2018). Fast pyrolysis from Napier grass for pyrolysis oil production by using circulating Fluidized Bed Reactor: Improvement of pyrolysis system and production cost. Energy Reports 4, 565-575. https://doi.org/10.1016/j.egyr.2018.08.004

Tripathi, M., Sahu, J.N., Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review Renew Sust Energ Rev 55, 467-481. https://doi.org/10.1016/j.rser.2015.10.122

Tang, Y., Alam, M.S., Konhauser, K.O., Alessi, D.S., Xu, S., Tian, W., Liu, Y. (2019). Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater. J Clean Prod 209, 927-936. https://doi.org/10.1016/j.jclepro.2018.10.268

Tao, Y., Li, C., Li, J., Yan, B.B., Chen, G.Y., Cheng, Z.J., Li, W.Q., Lin, F.W., Hou, L. (2020). Multi-step separation of different chemical groups from the heavy fraction in biomass fast pyrolysis oil. Fuel Process Technol 202, 106366. https://doi.org/10.1016/j.fuproc.2020.106366

Teng, Q., Zhang, D., Yang, C. (2021). A review of the application of different treatment processes for oily sludge. Environ Sci Pollut Res 28(1), 121-132. https://doi.org/10.1007/s11356-020-11176-2

Tian, Y., Li, J., Yan, X., Whitcombe, T., Thring, R. (2019). Co-pyrolysis of metal contaminated oily waste for oil recovery and heavy metal immobilization. J Hazard Mater 373, 1-10. https://doi.org/10.1016/j.jhazmat.2019.03.061

Wahab, M.A., Ates, F., Yildirir, E., Miskolczi, N. (2023). Investigation of thermal degradation kinetics and catalytic pyrolysis of industrial sludge produced from textile and leather industrial wastewater. Biomass Convers Biorefinery 13(12), 11187-11201. https://doi.org/10.1007/s13399-021-02183-5

Wang, X., Wang, Q., Wang, S., Li, F., Guo, G. (2012). Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oil sludge. Bioresour Technol 111, 308-315. https://doi.org/10.1016/j.biortech.2012.01.158

Wang, C., Wang, W., Lin, L., Zhang, F., Zhang, R., Sun, J., Song, Z., Mao, Y., Zhao, X. (2020). A stepwise microwave synergistic pyrolysis approach to produce sludge-based biochars: Feasibility study simulated by laboratory experiments. Fuel 272, 117628. https://doi.org/10.1016/j.fuel.2020.117628

Wang, X., Chi, Q., Liu, X., Wang, Y. (2019). Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge. Chemosphere 216, 698-706. https://doi.org/10.1016/j.chemosphere.2018.10.189

Wang, Z., Gong,Z., Wang, Z., Li, X., Chu, Z. (2021). Application and development of pyrolysis technology in petroleum oily sludge treatment. Environ Eng Res 26(1), 1-15. https://doi.org/10.4491/eer.2019.460

Wang, Z.Q., Guo, Q.J., Liu, X.M., Cao, C.Q. (2007). Low temperature pyrolysis characteristics of oil sludge under various heating conditions. Energy Fuel 21, 957-962. https://doi.org/10.1021/ef060628g

Wang, S. (2008). Application of Solid Ash Based Catalysts in Heterogeneous Catalysis. Environ Sci Technol 42(19), 7055-7063. https://doi.org/10.1021/es801312m

Wang, A.Y., Sun, K., Wu, L., Wu, P., Zeng, W., Tian, Z., Huang, Q.-X. (2020). Co-carbonization of biomass and oily sludge to prepare sulfamethoxazole super-adsorbent materials. Sci Total Environ 698, 134238. https://doi.org/10.1016/j.scitotenv.2019.134238

Wang, J., Sun, C., Lin, B.-C., Huang, Q.-X., Ma, Z,-Y., Chi, Y., Yan, J.-H. (2018). Micro- and mesoporous-enriched carbon materials prepared from a mixture of petroleum-derived oily sludge and biomass. Fuel Process Technol 171, 140-147. https://doi.org/10.1016/j.fuproc.2017.11.013

Wang, Y., Sun, T., Tong, L., Gao, Y., Zhang, H., Zhang, Y., Wang, Z., Zhu, S. (2023). Non-free Fe dominated PMS activation for enhancing electro-Fenton efficiency in neutral wastewater. J Electroanal Chem 928, 117062. https://doi.org/10.1016/j.jelechem.2022.117062

Wang, Y., Dong, B., Fan, Y., Hu, Y., Zhai, X., Deng, C., Xu, Y., Shen, D., Dai, X. (2019). Nitrogen transformation during pyrolysis of oilfield sludge with high polymer content. Chemosphere 219, 383-389. https://doi.org/10.1016/j.chemosphere.2018.11.171

Wen, Y., Xie, Y., Jiang, C., Li, W., Hou, Y. (2021). Products distribution and interaction mechanism during co-pyrolysis of rice husk and oily sludge by experiments and reaction force field simulation. Bioresour Technol 329, 124822. https://doi.org/10.1016/j.biortech.2021.124822

Wu, Z., Yin, J., Wang, J. (2020). Study on the Role of Microwave Absorbent in Microwave Pyrolysis of Oily Sludge. International Core Journal of Engineering 6(12), 417-420. https://api.semanticscholar.org/CorpusID:244486312

Xie, Q., Chen, Z., Zhou, Y., Pan, T., Duan, Y., Yu, S., Liang, X., Wu, Z., Ji, W., Nie, Y. (2023). Efficient Treatment of Oily Sludge via Fast Microwave-Assisted Pyrolysis, Followed by Thermal Plasma Vitrification. Molecules 28(10). https://doi.org/10.3390/molecules28104036

Xiao, Q., Chen, W., Tian, D., Shen, F., Hu, J., Long, L., Zeng, Y., Yang, G., Deng, S. (2019). Integrating the bottom ash residue from biomass power generation into anaerobic digestion to improve biogas. https://doi.org/10.1016/j.cej.2019.123946

Xie, S., Yu, G., Li, C., Li, J., Wang, G., Dai, S., Wang, Y. (2020). Treatment of high-ash industrial sludge for producing improved char with low heavy metal toxicity. J Anal Appl Pyrolysis 150, 104866. https://doi.org/10.1016/j.jaap.2020.104866

Xu, H., Xu, H., Hungwe, D., Yang, P., Yu, M., Cheng, S., Yoshikawa, K., Takahashi, F. (2024). Oil sludge addition enables prediction of biomass pyrolysis product profiles by synergistic behaviors between biomass components and oil sludge. Appl Energy 362, 123036. https://doi.org/10.1016/j.apenergy.2024.123036

Xu, H., Cheng, S., Hungwe,D., Yoshikawa, K., Takahashi, F. (2022). Co-pyrolysis coupled with torrefaction enhances hydrocarbons production from rice straw and oil sludge: The effect of torrefaction on co-pyrolysis synergistic behaviors. Appl Energy 327, 120104. https://doi.org/10.1016/j.apenergy.2022.120104

Yang, P., Zhou, P., Li, Y., Qu,C., Zhang, N. (2018). Recent development in pyrolytic catalysts of oil sludge. Pet Sci Technol 36(0), 520-524. https://doi.org/10.1080/10916466.2018.1431661

Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12-13), 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013

Yang,Z., Kumar, A., Apblett, A.W., Moneeb, A.M. (2017). Co-Pyrolysis of torrefied biomass and methane over molybdenum modified bimetallic HZSM-5 catalyst for hydrocarbons production. Green Chem 19(3), 757-768 https://doi.org/10.1039/C6GC02497A

Yang, Z., Wu, Y., Zhang, Z., Li, H., Li, X., Egorov, R.I., Strizhak, P. A., Gao, X. (2019). Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects. Renew. Sustain Energy Rev 103, 384-398. https://doi.org/10.1016/j.rser.2018.12.047

Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., Xi, Y.Q. (2015). A comprehensive review on the applications of coal fly ash. Earth-Science Rev 141, 105-121. https://doi.org/10.1016/j.earscirev.2014.11.016

Yu, H., Lin, F., Guo, X,. Yao, H., Zheng, F., Li, J., Zhang, M., Li, R., Yan, B., Chen, G. (2024). Co-pyrolysis of saw dust and oily sludge with waste-heat utilization of steel slag on rotary kiln simulated engineering practice. Fuel 364, 131012. https://doi.org/10.1016/j.fuel.2024.131012

Yu, Y., Yang, C., Li, J., Zhu, Y., Yan, Z., Zhang, H. (2020). Screening of inexpensive and efficient catalysts for microwave-assisted pyrolysis of ship oil sludge. J Anal Appl Pyrolysis 152, 104971. https://doi.org/10.1016/j.jaap.2020.104971

Yu, C., Dongxu, L., Hongyu, C., Suiyi, Z., Xianze, W., Jiakuan, Y., Xinfeng, X., Eskola, J., Dejun, G.B. (2022). Review of resource utilization of Fe-rich sludges: purification, upcycling, and application in wastewater treatment. Environ Rev 30(3), 460-484. https://doi.org/10.1139/er-2021-0038

Zhao, M.., Wang, X., Liu, D., Li, Z., Guo, S., Zhu, W., Shi, N., Wen, F., Dong, J. (2020). Insight into essential channel effect of pore structures and hydrogen bonds on the solvent extraction of oily sludge. J Hazard Mater 389, 121826. https://doi.org/10.1016/j.jhazmat.2019.121826

Zhao, K., Shu, Y., Li, F., Peng, G. (2023). Bimetallic catalysts as electrocatalytic cathode materials for the oxygen reduction reaction in microbial fuel cell: A review. Green Energy Environ 8(4), 1043-1070. https://doi.org/10.1016/j.gee.2022.10.007

Zhao, S., Zhou, X., Wang, C., Jia, H. (2018). Dewatering and low-temperature pyrolysis of oily sludge in the presence of various agricultural biomasses. Environ Technol 39(21), 2715-2723. https://doi.org/10.1080/09593330.2017.1365938

Zhu, J., Yang, Y., Chen, Y., Yang, L., Wang, Y., Zhu, Y., Chen, H. (2018). Co-pyrolysis of textile dyeing sludge and four typical lignocellulosic biomasses: Thermal conversion characteristics, synergetic effects and reaction kinetics. Int J Hydrogen Energy 43(49), 22135-22147. https://doi.org/10.1016/j.ijhydene.2018.10.058

Zhu, S., Wang, Z., Lin, X., Sun, T., Qu, Z., Chen, Y., Su, T., Huo, Y. (2020). Effective recycling of Cu from electroplating wastewater effluent via the combined Fenton oxidation and hydrometallurgy route. J Environ Manage 271, 110963. https://doi.org/10.1016/j.jenvman.2020.110963

Zhu, J., Zhu, L., Guo, D., Chen, Y., Wang, X., Zhu, Y. (2020). Co-pyrolysis of petrochemical sludge and sawdust for syngas production by TG-MS and fixed bed reactor. Int J Hydrogen Energy 45(55), 30232-30243. https://doi.org/10.1016/j.ijhydene.2020.08.092

Zhu, X.F., Zhao, L., Fu, F.Y., Yang, Z.B., Li, F., Yuan, W.Y., Zhou, M.Y., Fang, W., Zhen, G.Y., Lu, X.Q., Zhang, X.D. (2019). Pyrolysis of pre-dried dewatered sewage sludge under different heating rates: Characteristics and kinetics study. Fuel 255, 115591. https://doi.org/10.1016/j.fuel.2019.05.174

Zhou, X., Jia, H., Qu, C., Fan, D., Wang, C. (2017). Low-temperature co-pyrolysis behaviours and kinetics of oily sludge: effect of agricultural biomass. Environ Technol 38, 361-369. https://doi.org/10.1080/09593330.2016.1194481

Published

2025-06-30

Issue

Section

Chemistry