Paleoclimate analysis of the Early Miocene in the Kushuk locality (Turgai Depression) based on the Coexistence Approach method
Views: 0 / PDF downloads: 1
DOI:
https://doi.org/10.32523/2616-6771-2025-150-1-171-184Keywords:
Lower Miocene, Turgai trough, paleoclimatic reconstruction, nearest modern analogues (NLR) methodAbstract
This article reconstructs the Early Miocene climate of the Turgay Trough in Central Asia, using the Coexistence Approach (CA) and paleofloristic data from Kushuk. Its main goal is to determine climatic parameters and ecosystem changes in the Early Miocene. Results indicate a warm-temperate climate with mild winters and sufficient rainfall, featuring a mean annual temperature of 14.2°C and mean annual precipitation of 898.5 mm. These conditions supported diverse forest ecosystems, including broadleaf and mixed woodlands. A comparison with the modern climate shows a strong contrast, suggesting increased continentality and reduced moisture availability. This evidence supports a gradual climatic cooling and drying during the Miocene, driven by global and regional factors such as tectonic uplift and oceanic currents.
The study underscores the climatic evolution of Central Asia and validates the CA method as an effective tool for paleoclimatic studies. Findings can be applied to climate modeling and assessing how shifts in temperature and precipitation influenced Neogene ecosystems. Planned research will examine the interplay of climatic and geological factors, focusing on how changes in precipitation patterns shaped habitat distribution and species composition. These data provide a basis for refining paleoclimatic models and reconstructing biosphere dynamics in the Neogene, thereby advancing our understanding of how climate influenced regional development and biodiversity.
Downloads
References
Aksu, A. E., Hiscott, R. N., Yaşar, D., & Mudie, P. J. (1995). Paleoclimatic and paleoceanographic evolution of the Aegean Sea during the last 5 million years. Palaeogeography, Palaeoclimatology, Palaeoecology, 116(1-2), 91-133.
Bruch, A. A., Mosbrugger, V., & Uhl, D. (2007). Miocene climate in Europe – patterns and evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 253(1-2), 17. https://doi.org/10.1016/j.palaeo.2007.03.031
Bruch, A. A., & Zhilin, S. G. (2006). Early Miocene climate of Central Eurasia – Evidence from Aquitanian floras of Kazakhstan. Palaeogeography, Palaeoclimatology, Palaeoecology, 248(1-2), 32-48.
Dupont-Nivet, G., Krijgsman, W., Langereis, C. G., Abels, H. A., & Dai, S. (2007). Tibetan plateau uplift constrained by magnetostratigraphically dated fluvial sediments across the NE Tarim Basin. Earth and Planetary Science Letters, 263(1-2), 195-205.
Fortelius, M., Eronen, J., Jernvall, J., Liu, L., Pushkina, D., Rinteenketo, R., & Zhang, Z. (2002). Fossil mammals resolve regional patterns of Eurasian climate variation during 20 million years. Evolutionary Ecology Research, 4(8), 1013-1016.
Graham, A. (2011). A natural history of the Central Asiatic deserts. Annals of the Missouri Botanical Garden, 98(1), 1-130. http://dx.doi.org/10.2307/23028999
Grimalt, J. O., & Targarona, J. (2017). Paleoclimate records from Central Asia and their implications for global climate changes. Earth-Science Reviews, 175, 1-25. https://doi.org/10.1016/j.earscirev.2017.10.005
Ivanov, D., Utescher, T., Mosbrugger, V., Syabryaj, S., Djordjević-Milutinović, D., & Molchanoff, S. (2011). Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe). Palaeogeography, Palaeoclimatology, Palaeoecology, 304(3–4), 262–275. https://doi.org/10.1016/j.palaeo.2010.07.006
Jacques, F. M. B., Shi, G., Su, T., Zhou, Z., & Chen, W. (2011). Investigating the paleoclimate significance of fossil leaves using leaf physiognomy: A case study from the Miocene of Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 304(3-4), 276-285. https://doi.org/10.1016/j.palaeo.2010.12.012
Kazhydromet. (2024). Klimaticheskie kharakteristiki regionov Kazakhstana [Climatic characteristics of Kazakhstan regions]. Retrieved from https://www.kazhydromet.kz/uploads/files/72/file/5ec145504ea54-oblast.pdf
Kornilova, V. S. (1955). K kharakteristike flory Bolattamskikh sloev Turgaya [On the characteristics of the flora of the Bolattam layers of Turgai]. Izvestiya AN KazSSR, Seriya Biologicheskaya [News of the Academy of Sciences of the Kazakh SSR, Biological Series], 9, 3-19.
Kornilova, V. S. (1956). Itogi izucheniya oligocenovoy flory Turgaya [Results of the study of the Oligocene flora of Turgai]. Trudy Instituta botaniki AN KazSSR [Proceedings of the Institute of Botany of the Academy of Sciences of the Kazakh SSR], 3, 59-101. Izdatel'stvo AN KazSSR [Publishing House of the Academy of Sciences of the Kazakh SSR], Almaty.
Kornilova, V. S. (1960). Nizhne-Miocenovaya flora Kushuka (Turgaisky progib) [Lower Miocene flora of Kushuk (Turgai depression)]. Izdatel'stvo Akademii nauk Kazakhskoy SSR [Publishing House of the Academy of Sciences of the Kazakh SSR], Almaty, 3-19.
Kornilova, V. S., & Lavrov, V. V. (1949). O nakhodkakh tretičnoy kserofitnoy flory v Turgaye i eë stratigraficheskom polozhenii [On the findings of the Tertiary xerophytic flora in Turgai and its stratigraphic position]. Vestnik AN KazSSR [Bulletin of the Academy of Sciences of the Kazakh SSR], 5, 50.
Kurlov, S. I., & Perezhogin, Yu. V. (2015). Iskopayemaya paleogen-neogenovaya flora Severnogo Turgaya (Tsentral'nyy Kazakhstan) [Fossil Paleogene-Neogene flora of Northern Turgai (Central Kazakhstan)]. Vestnik Orenburgskogo gosudarstvennogo universiteta [Bulletin of Orenburg State University], 10(185), 30-36.
Liu, Yu-Sheng Christopher, et al. (2011). The evolution of Miocene climates in North China: Preliminary results of quantitative reconstructions from plant fossil records. Palaeogeography, Palaeoclimatology, Palaeoecology, 304(3-4), 308-317. https://doi.org/10.1016/j.palaeo.2010.07.004
Mosbrugger, V., Utescher, T., & Dilcher, D. L. (2005). Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences, 102(42), 15144-15149.
Nigmatova, S., Zhamangara, A., Akmagambet, S., Madyarova, I., Abubakirova, N., Kashaganov, K., & Zadagali, A. (2023). Vozmozhnosti rekonstruktsii paleoklimata paleogena i neogena na osnove izucheniya iskopayemoy flory (na primere paleoflory reki Uly-Zhilanshik) [Possibilities of reconstructing the Paleogene and Neogene paleoclimate based on the study of fossil flora (on the example of the Uly-Zhilanshik River paleoflora)]. Vestnik Evraziyskogo natsional'nogo universiteta im. L.N. Gumilyova, Seriya Khimiya, Geografiya, Ekologiya [Bulletin of L.N. Gumilyov Eurasian National University, Series Chemistry, Geography, Ecology], 145(4), 71-82. https://doi.org/10.32523/2616-6771-2023-145-4-71-82
Popova, S., Utescher, T., Averyanova, A., Tarasevich, V., Tropina, P., & Xing, Y. (2019). Early Miocene flora of Central Kazakhstan (Turgai Plateau) and its paleoenvironmental implications. Plant Diversity, 41(3), 183-197. https://doi.org/10.1016/j.pld.2019.04.002
Sun, J., Tada, R., Jia, J., Zheng, H., & Liu, X. (2010). Late Miocene desertification in the Tarim Basin. Proceedings of the National Academy of Sciences, 107(35), 15446-15451. https://doi.org/10.1073/pnas.1410890111
Tiffney, B. H., & Manchester, S. R. (2001). The fossil history of the Juglandaceae. Brittonia, 53(S1), 82-116.
Utescher, T., Bruch, A., & Mosbrugger, V. (2024). The Palaeoflora Database - Documentation and Data. Zenodo. https://doi.org/10.5281/zenodo.10881069
Utescher, T., Bruch, A. A., Erdei, B., François, L., Ivanov, D., Jacques, F. M. B., et al. (2014). The coexistence approach – theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeography, Palaeoclimatology, Palaeoecology, 410, 58-73. https://doi.org/10.1016/j.palaeo.2014.05.031
Wang, P. X. (2009). Climate and sea-level changes during the past three million years. Annual Review of Earth and Planetary Sciences, 37, 313-336.
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686-693.
Zhamangara, A., Akmagambet, S., Nigmatova, S., Madyarova, I., Kashaganov, K., Zadagali, A., & Bayshashov, B. (2025). The Early Miocene Paleoclimate of Erzhilansay: Interpretation of Climatic Parameters Using Modern Methods. Sustainability, 17(1), 143. https://doi.org/10.3390/su17010143
Downloads
Published
Issue
Section
License
Copyright (c) 2025 A. Zhamangara, Sh. Akmagambet, S. Nigmatova (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.