Многофункциональный полиэтиленимин: физико-химические свойства и современные области применения


Просмотры: 4 / Загрузок PDF: 1

Авторы

DOI:

https://doi.org/10.32523/2616-6771-2025-153-4-55-72

Ключевые слова:

разветвлённый полиэтиленимин (р-ПЭИ), линейный полиэтиленимин (л-ПЭИ), поли(2-этил-2-оксазолин), кислотный гидролиз, анионная полимеризация, катионная полимеризация

Аннотация

Полиэтиленимин (ПЭИ) представляет собой перспективный полимер с уникальными физико-химическими свойствами, позволяющими использовать его в различных областях науки и техники. В данной обзорной статье рассмотрены основные методы синтеза ПЭИ, включая анионную полимеризацию азиридина, катионную полимеризацию 2-оксазолинов и кислотный гидролиз поли(2-этил-2-оксазолина). Описаны ключевые физико-химические свойства полимера, включая растворимость, термическую стабильность и способность к комплексообразованию. Особое внимание уделено возможностям использования ПЭИ в генной терапии, очистке воды и антимикробных покрытиях. Обсуждаются новые подходы к улучшению его биосовместимости, что делает этот полимер перспективным материалом для инновационных разработок.

Скачивания

Данные скачивания пока недоступны.

Библиографические ссылки

Barros, J., Dias, A., Rodrigues, M. A., Pina-Vaz, C., Lopes, M. A., & Pina-Vaz, I. (2015). Antibiofilm and antimicrobial activity of polyethylenimine: An interesting compound for endodontic treatment. Journal of Contemporary Dental Practice, 16(6), 427–432. https://doi.org/10.5005/jp-journals-10024-1701

Bauer, M., Tauhardt, L., Lambermont-Thijs, H. M. L., Kempe, K., Hoogenboom, R., Schubert, U. S., & Fischer, D. (2018). Rethinking the impact of protonable amine density on cationic polymers for gene delivery. European Journal of Pharmaceutics and Biopharmaceutics, 128, 96–106. https://doi.org/10.1016/j.ejpb.2018.10.003

Bediako, J. K., Lin, S., Sarkar, A. K., Zhao, Y., Choi, J.-W., Song, M.-H., Wei, W., Reddy, D. H. K., Cho, C.-W., & Yun, Y.-S. (2020). Benignly-fabricated crosslinked polyethylenimine/calcium-alginate fibers as high-performance adsorbents for effective recovery of gold. Journal of Cleaner Production, 252, 119389. https://doi.org/10.1016/j.jclepro.2019.119389

Boussif, O., Lezoualc’h, F., Zanta, M. A., Djavaheri Mergny, M., Scherman, D., Demeneix, B., & Behr, J. P. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proceedings of the National Academy of Sciences, 92(16), 7297–7301.

Casper, J., Schenk, S. H., Parhizkar, E., Detampel, P., Dehshahri, A., & Huwyler, J. (2023). Polyethylenimine (PEI) in gene therapy: Current status and clinical applications. Journal of Controlled Release, 362, 667–691. https://doi.org/10.1016/j.jconrel.2023.09.001

Chen, Z., Lv, Z., Sun, Y., Chi, Z., & Qing, G. (2020). Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. Journal of Materials Chemistry B, 8(15), 2951–2973. https://doi.org/10.1039/C9TB02271F

Coulembier, O., Moins, S., Maji, S., Zhang, Z., De Geest, B. G., Dubois, P., & Hoogenboom, R. (2014). Linear polyethyleneimine as (multi)functional initiator for organocatalytic L-lactide polymerization. Journal of Materials Chemistry B. Advance Article. https://doi.org/10.1039/C4TB01387E

Dai, Y., & Zhang, X. (2019). MicroRNA delivery with bioreducible polyethylenimine as a non-viral vector for breast cancer gene therapy. Macromolecular Bioscience, 19(4), 1800445. https://doi.org/10.1002/mabi.201800445

de la Rosa, V. R., Bauwens, E., Monnery, B. D., De Geest, B. G., & Hoogenboom, R. (2014). Fast and accurate partial hydrolysis of poly(2-ethyl-2-oxazoline) into tailored linear polyethylenimine copolymers. Polymer Chemistry, 5(17), 4957–4964. https://doi.org/10.1039/c4py00355a

Finny, A. S., Cheng, N., Popoola, O., & Andreescu, S. (2022). 3D printable polyethyleneimine-based hydrogel adsorbents for heavy metal ions removal. Environmental Science: Advances, 1, 443–455. https://doi.org/10.1039/d2va00064d

Gleede, T., Reisman, L., Rieger, E., Mbarushimana, P. C., Rupar, P. A., & Wurm, F. R. (2019). Aziridines and azetidines: Building blocks for polyamines by anionic and cationic ring-opening polymerization. Polymer Chemistry, 10, 3257–3283.

Goncharuk, V. V., Puzyrnaya, L. N., Pshinko, G. N., Bogolepov, A. A., & Demchenko, V. Ya. (2010). The removal of heavy metals from aqueous solutions by montmorillonite modified with polyethylenimine. Journal of Water Chemistry and Technology, 32(2), 67–72. https://doi.org/10.3103/S1063455X10020013

Gosselin, M. A., Guo, W., & Lee, R. J. (2001). Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjugate Chemistry, 12(6), 989–994. https://doi.org/10.1021/bc0100455

Göppert, N. E., Kleinsteuber, M., Weber, C., & Schubert, U. S. (2020). Degradable poly(2-oxazoline) analogues from partially oxidized poly(ethylene imine). Macromolecular Rapid Communications, 41(11), 1900615. https://doi.org/10.1002/marc.201900615

Guo, D.-M., An, Q.-D., Xiao, Z.-Y., Zhai, S.-R., & Shi, Z. (2017). Polyethylenimine-functionalized cellulose aerogel beads for efficient dynamic removal of chromium(VI) from aqueous solution. RSC Advances, 7, 54039–54052. https://doi.org/10.1039/c7ra09940a

Halacheva, S., Madsen, J., Ladmiral, V., Haddleton, D. M., & Howdle, S. M. (2011). Thermoresponsive behavior and self-assembly of linear poly(ethylene imine)-poly(2-ethyl-2-oxazoline) comb block copolymers. Macromolecules, 44(19), 7567–7574. https://doi.org/10.1021/ma201461e

Hao, F., Li, Y., Zhu, J., Sun, J., Marshall, B., Lee, R. J., Teng, L., Yang, Z., & Xie, J. (2019). Polyethylenimine-based formulations for delivery of oligonucleotides. Current Medicinal Chemistry, 26(13), 2264–2284. https://doi.org/10.2174/0929867325666181031094759

Hu, F., Li, Z., Xia, Y., Li, S., & Wu. C. (2014). Rare-earth triflate-initiated cationic ring-opening polymerization of 2-oxazolines: Synthesis of linear polyethyleneimine with controlled properties. Journal of Polymer Science, 52(6), 1047–1059. https://doi.org/10.1039/C4RA11404C

Huang, T., Cao, S., Luo, D., Zhang, N., Lei, Y.-Z., & Wang, Y. (2022). Polydopamine-assisted polyethylenimine grafting melamine foam and the application in wastewater purification. Chemosphere, 287, 132054. https://doi.org/10.1016/j.chemosphere.2021.132054

Huh, S.-H., Do, H.-J., Lim, H.-Y., Kim, D.-K., Choi, S.-J., Song, H., Kim, N.-H., Park, J.-K., Chang, W.-K., Chung, H.-M., & Kim, J.-H. (2007). Optimization of 25 kDa linear polyethylenimine for efficient gene delivery. Biologicals, 35(3), 165–171. https://doi.org/10.1016/j.biologicals.2006.08.004

Jiang, C., Chen, J., Li, Z., Wang, Z., Zhang, W., & Liu, J. (2019). Recent advances in the development of polyethylenimine-based gene vectors for safe and efficient gene delivery. Expert Opinion on Drug Delivery, 16, 1–15. https://doi.org/10.1080/17425247.2019.1604681

Khalaj, M., Khatami, S.-M., Kalhor, M., Zarandi, M., Anthony, E. T., & Klein, A. (2023). Polyethylenimine grafted onto nano-NiFe2O4@SiO2 for the removal of CrO42-, Ni2+, and Pb2+ ions from aqueous solutions. Molecules, 29(1), 125. https://doi.org/10.3390/molecules29010125

Lambermont-Thijs, H. M. L., van der Woerdt, F. S., Baumgaertel, A., Bonami, L., Du Prez, F. E., Schubert, U. S., & Hoogenboom, R. (2010). Linear poly(ethylene imine)s by acidic hydrolysis of poly(2-oxazoline)s: Kinetic screening, thermal properties, and temperature-induced solubility transitions. Macromolecules, 43(2), 927–933. https://doi.org/10.1021/ma9020455

Liu, J., Su, D., Yao, J., Huang, Y., Shao, Z., & Chen, X. (2017). Soy protein-based polyethylenimine hydrogel and its high selectivity for copper ions removal in wastewater treatment. Journal of Materials Chemistry A. Advance online publication. https://doi.org/10.1039/C6TA10814H

Liu, M., Li, J., & Li, B. (2018). Mannose-modificated polyethylenimine: A specific and effective antibacterial agent against Escherichia coli. Langmuir, 34(5), 1574–1580. https://doi.org/10.1021/acs.langmuir.7b03556

Ma, Y., Zhang, B., Ma, H., Yu, M., Li, L., & Li, J. (2016). Electrospun nanofibrous polyethylenimine mat: A potential adsorbent for the removal of chromate and arsenate from drinking water. RSC Advances, 6, 30739–30746. https://doi.org/10.1039/c5ra26973c

Maurisse, R., De Semir, D., Emamekhoo, H., Bedayat, B., Abdolmohammadi, A., Parsi, H., & Gruenert, D. C. (2010). Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnology, 10, 9. https://doi.org/10.1186/1472-6750-10-9

Mayandi, V., Sridhar, S., Fazil, M. H. U. T., Goh, E. T. L., Htton, H. M., Orive, G., Choong, Y.K., Saravanan R., Beuerman, R. W., Barkham, T., Yang, L., Baskaran, M., Jhanji, V., Loh, X. J., Verma, N. K., & Lakshminarayanan, R. (2019). Protective action of linear polyethylenimine against Staphylococcus aureus colonization and exaggerated inflammation. ACS Infectious Diseases, 5(8), 1411–1420. https://doi.org/10.1021/acsinfecdis.9b00102

Mees, M. A. (2017). Poly(2-alkyl-2-oxazoline)s and poly(ethylene imine): How one thing led to the other [Doctoral dissertation, Ghent University, Belgium]. Ghent University Academic Bibliography. https://biblio.ugent.be/publication/8516651

Mees, M. A., & Hoogenboom, R. (2018). Full and partial hydrolysis of poly(2-oxazoline)s and subsequent post-polymerization modification. Polymer Chemistry, 9, 4957–4964. https://doi.org/10.1039/C8PY00978C

Neuberg, P., & Kichler, A. (2014). Recent developments in nucleic acid delivery with polyethylenimines. In T. Friedmann (Ed.), Advances in Genetics (Vol. 88, pp. 263–284). Elsevier. https://doi.org/10.1016/B978-0-12-800148-6.00009-2

Nuzhdina, A. V., Morozov, A. S., Kopitsyna, M. N., Strukova, E. N., Shlykova, D. S., Bessonov, I. V., & Lobakova, E. S. (2017). Simple and versatile method for creation of non-leaching antimicrobial surfaces based on cross-linked alkylated polyethyleneimine derivatives. Materials Science and Engineering: C, 70, 788–795. https://doi.org/10.1016/j.msec.2016.09.033

Pandey, R., Pinon, V., Garren, M., Maffe, P., Mondal, A., Brisbois, E. J., & Handa, H. (2024). N-acetyl cysteine-decorated nitric oxide-releasing interface for biomedical applications. ACS Applied Materials & Interfaces, 16, 24248–24260. https://doi.org/10.1021/acsami.4c02369

Pang, Y., Zeng, G., Tang, L., Zhang, Y., Liu, Y., Lei, X., Li, Z., Zhang, J., & Xie, G. (2011). PEI-grafted magnetic porous powder for highly effective adsorption of heavy metal ions. Desalination, 281(1), 278–284. https://doi.org/10.1016/j.desal.2011.08.001

Petit, C., Grassl, B., Mignard, E., Luef, K. P., Wiesbrock, F., & Reynaud, S. (2017). Cationic ring-opening polymerization of 2-oxazolines in ionic liquids and microfluidic reactors for fast and controlled polymerization. Macromolecular Chemistry and Physics, 218(16), 1700253. https://doi.org/10.1039/C7PY01255A

Priyam, A., Nagar, P., Sharma, A. K., & Kumar, P. (2017). Mussel-inspired polydopamine-polyethylenimine conjugated nanoparticles as efficient gene delivery vectors for mammalian cells. Colloids and Surfaces B: Biointerfaces. Advance online publication. https://doi.org/10.1016/j.colsurfb.2017.10.063

Rosenkranz, A. A., & Sobolev, A. S. (2015). Polyethylenimine-based polyplex nanoparticles and features of their behavior in cells and tissues. Russian Chemical Bulletin, International Edition, 64(12), 2749–2755.

Rupar, P. A., Reisman, L., & Mbarushimana, P. C. (2017). Synthesis of linear polyethyleneimine by living anionic polymerization (U.S. Patent Application No. US20170204224A1). U.S. Patent and Trademark Office.

Sedlacek, O., Janoušková, O., Verbraeken, B., & Hoogenboom, R. (2018). Superhydrophilic poly(2-oxazoline)s via acylation of polyethylenimine. Biomacromolecules. Advance online publication. https://doi.org/10.1021/acs.biomac.8b01366

Shan, X., Williams, A. C., & Khutoryanskiy, V. V. (2020). Polymer structure and property effects on solid dispersions with haloperidol: Poly(N-vinyl pyrrolidone) and poly(2-oxazolines) studies. International Journal of Pharmaceutics, 590, 119884. https://doi.org/10.1016/j.ijpharm.2020.119884

Socia, A., Liu, Y., Zhao, Y., Abend, A., & Wuelfing, W. P. (2020). Development of an ultra-high-performance liquid chromatography-charged aerosol detection/UV method for the quantitation of linear polyethylenimines in oligonucleotide polyplexes. Journal of Separation Science, 43(24), 4421–4429. https://doi.org/10.1002/jssc.202000414

Sun, X., Yang, L., Li, Q., Liu, Z., Dong, T., & Liu, H. (2015). Polyethylenimine-functionalized poly(vinyl alcohol) magnetic microspheres as a novel adsorbent for rapid removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 262, 101–108. https://doi.org/10.1016/j.cej.2014.09.045

Tanaka, R., Ueoka, I., Takaki, Y., Kataoka, K., & Saito, S. (1983). High molecular weight linear poly(ethyleneimine) and poly(N-methylethylenimine). Macromolecules, 16(6), 849–853.

Tauhardt, L., Kempe, K., Knop, K., Altuntaş, E., Jäger, M., Schubert, S., Fischer, D., & Schubert, U. S. (2011). Linear polyethyleneimine: Optimized synthesis and characterization - on the way to pharmagrade batches. Macromolecular Chemistry and Physics, 212(19), 1918–1924. https://doi.org/10.1002/macp.201100190

Weyts, K. R., & Goethals, E. J. (1988). New synthesis of linear polyethyleneimine. Polymer Bulletin, 19(1), 13–19.

Wong, S., Abd Ghafar, N., Ngadi, N., Razmi, F. A., Inuwa, I. M., Mat, R., & Saidina Amin, N. A. (2020). Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Scientific Reports, 10, 2928. https://doi.org/10.1038/s41598-020-60021-6

Xanthopoulou, M., & Katsoyiannis, I. A. (2023). Enhanced adsorption of chromate and arsenate ions from contaminated water with emphasis on polyethylenimine modified materials: A review. Separations, 10, 441. https://doi.org/10.3390/separations10080441

Xing, M., Zhang, H., Li, Z., Zhang, L., & Qian, W. (2024). Long-lasting renewable antibacterial N-halamine coating enable dental unit waterlines to prevention and control of contamination of dental treatment water. Frontiers in Materials, 11, 1399597. https://doi.org/10.3389/fmats.2024.1399597

Yadav, S., & Kumar, P. (2018). Enhanced uptake of plasmid at boronic acid decorated linear polyethylenimines results in higher transfection efficiency. Biointerphases, 13(6), 061003. https://doi.org/10.1116/1.5054930

Yu, B., Zhang, Y., Zheng, W., Fan, C., & Chen, T. (2022). Polyethyleneimine-based drug delivery systems for cancer theranostics. ACS Macro Letters, 11(8), 1043–1056. https://doi.org/10.1021/acs.macromol.2c01308

Zakeri, A., Kouhbanani, M. A. J., Beheshtkhoo, N., Beigi, V., Mousavi, S. M., Hashemi, S. A. R., Zade, A. K., Amani, A. M., Savardashtaki, A., Mirzaei, E., Jahandideh, S., & Movahedpour, A. (2018). Polyethylenimine-based nanocarriers in co-delivery of drug and gene: A developing horizon. Nano Reviews & Experiments, 9(1), 1488497. https://doi.org/10.1080/20022727.2018.1488497

Zeng, H., Wang, L., Zhang, D., Yan, P., Nie, J., Sharma, V. K., & Wang, C. (2019). Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent. Chemical Engineering Journal. Advance online publication. https://doi.org/10.1016/j.cej.2018.10.001

Zhuk, D. S., Gembitskii, P. A., & Kargin, V. A. (1965). Advances in the chemistry of polyethyleneimine (polyaziridine). Russian Chemical Reviews, 34(7), 515–525.

Zou, Y., Li, D., Shen, M., & Shi, X. (2019). Polyethylenimine-based nanogels for biomedical applications. Macromolecular Bioscience, 19(9), 1900272. https://doi.org/10.1002/mabi.201900272

von Zelewsky, A., Barbosa, L., & Schläpfer, C.-W. (1993). Poly(ethylenimines) as Brønsted bases and as ligands for metal ions. Coordination Chemistry Reviews, 123, 229–246.

Загрузки

Опубликован

24-12-2025

Выпуск

Раздел

Химия