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Introduction

The global energy and chemical production landscape is experiencing a significant shift,
driven by the urgent need for sustainability and the potential of emerging technologies. As we
confront the challenges of climate change, resource depletion, and environmental harm, the
chemical industry finds itself at a pivotal moment. The shift from fossil fuel-based processes to
more sustainable practices is not just a passing trend but a crucial necessity for the future of
our planet [1]. This essay explores the priorities and opportunities presented by this transition,
focusing on sustainability and the key advancements made in the past decade [2].

Traditionally, the chemical industry has been fundamental to economic growth,
supplying vital materials and energy across sectors. However, conventional production
methods have come with considerable environmental costs, including greenhouse gas
emissions and ecological damage. The need for a fundamental shift is emphasized by growing
societal demand for sustainable solutions and the realization that current practices are
unsustainable. Moving forward, a comprehensive approach is essential, integrating
sustainability into all aspects of chemical production—from sourcing raw materials to final
applications [3,4].

Global greenhouse gas emissions have reached record levels, increasing by 1.3% in
2020, exacerbating the climate crisis (Figure 1).
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Figure 1. Solar reforming as an emerging technology for circular chemical

industries

Scarcity of natural resources such as fossil fuels is exacerbated by growing demand,
while the extraction and processing of raw materials is becoming increasingly costly and
environmentally hazardous [5-7]. Social demand for environmentally friendly products is also
increasing: according to surveys, more than 70% of global consumers prefer sustainably
produced goods. At the same time, governments are tightening regulations to reduce emissions
and implement environmentally friendly technologies, which requires companies to find new,
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cleaner and more efficient production methods, such as recycling waste and raw materials
using pyrolysis [8,9].

One of the most promising strategies for promoting sustainability in the chemical
industry is the use of renewable resources. Biomass, for example, provides a renewable
alternative to fossil fuels, allowing the production of chemicals and fuels through biorefinery
methods [5]. This not only lessens dependence on limited resources but also supports carbon
neutrality by absorbing CO2 from the atmosphere. Advances in lignin conversion technologies
and the development of platform molecules are driving more efficient and sustainable biomass
utilization [10]. The potential for biomass to serve as a key feedstock in the chemical industry
is immense, and continued research is essential to fully realize its benefits.

Alongside biomass, solar energy presents another major opportunity for sustainable
chemical production. Progress in materials for solar energy conversion, such as photocatalysts
and solar cells, has accelerated in recent years [11]. These technologies allow sunlight to be
directly converted into chemical energy, providing a clean and renewable power source.
Cutting-edge research in artificial photosynthesis and water splitting is focused on replicating
natural processes to sustainably produce fuels and chemicals [12]. By incorporating solar
energy into chemical production, we can decrease reliance on fossil fuels and reduce the
environmental impact of conventional methods [13].

Energy storage is a crucial element in the transition to a sustainable chemical industry.
As renewable energy sources become more widespread, the demand for efficient storage
solutions grows [14]. Advances in battery technologies, fuel cells, and supercapacitors are key
to enabling the broad adoption of renewable energy. In this study, we conducted a thorough
analysis of these technologies, employing specific criteria such as efficiency, capacity, and
sustainability to evaluate their effectiveness. We selected relevant research based on their
contributions to these criteria, ensuring a robust overview of current advancements in the field
[15].

Materials and methods

The development of new materials and technologies for energy storage will be central
to the future of sustainable chemistry. Additionally, utilizing carbon dioxide as a raw material
offers a unique solution to both energy production and greenhouse gas reduction [16]. CO2
utilization technologies seek to transform waste CO: into valuable chemicals and fuels,
effectively closing the carbon loop. This approach not only helps combat climate change by
lowering atmospheric COz levels but also creates new avenues for chemical production. Rapid
advancements in catalytic processes are making it possible to convert CO2 into a variety of
products, from fuels to polymers. We employed standardized criteria to evaluate the
effectiveness of these catalytic processes, allowing us to compare their performance with
existing methods. Integrating COz2 utilization into the chemical industry marks a significant step
toward achieving a circular economy [17].

While advancements in biomass utilization, solar energy conversion, energy storage,
and CO: utilization are encouraging, sustainability extends beyond technological innovation. A
holistic approach to sustainable chemistry must also address economic and socio-
environmental considerations [18]. The shift to a sustainable chemical industry requires
cooperation among researchers, industry leaders, and policymakers to create a supportive
environment for innovation. This includes establishing favorable regulatory frameworks,
fostering public-private partnerships, and investing in education and training to prepare the
workforce for future challenges.

Additionally, the role of catalysis in advancing sustainability is of critical importance.
Catalysis is a key technology that improves the efficiency and selectivity of chemical processes.
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In our review, we provide a detailed comparison of new catalysts, both homogeneous and
heterogeneous, highlighting how their innovations surpass existing technologies [19]. This
discussion illustrates the ways in which new catalysts contribute to more sustainable practices
by enabling reactions to occur under less extreme conditions, thus lowering energy
consumption and reducing waste production. Therefore, continued research in catalysis is vital
to fully realizing the potential of sustainable chemistry [20].

The future of chemistry is closely tied to the pursuit of sustainability. The shift from
conventional fossil fuel-based methods to innovative, sustainable practices presents both
challenges and opportunities [21]. By adopting renewable resources, utilizing solar energy,
enhancing energy storage systems, and converting CO2 into useful products, the chemical
industry can play a key role in addressing global energy and environmental issues. However,
achieving true sustainability requires a comprehensive approach that combines technological
advancements with economic and socio-environmental considerations.

Reflecting on the progress made over the past decade, moving forward will demand
ongoing investment in research, collaboration, and a steadfast commitment to fostering a
sustainable future for both the chemical industry and the broader world. The aim of this study
is to analyze the current state of research and assess the prospects of state-of-the-art
technologies and practices that promote sustainability in the fields of chemistry and energy.
The authors emphasize the significance of innovative solutions in areas such as bioprocessing,
solar energy conversion, energy storage, and carbon dioxide utilization, while advocating for a
comprehensive approach to sustainability that considers economic, social, and environmental
aspects.

Results and discussion

The sustainable future of chemicals and energy is a critical area of focus as the world
grapples with the dual challenges of climate change and resource scarcity. The chemical
industry is responsible for approximately 10% of global greenhouse gas emissions,
contributing significantly to climate change. In 2021 alone, the sector emitted over 1.2 billion
tons of CO2 in the U.S. [17]. This transformation is not only essential for environmental
preservation but also presents a wealth of opportunities for innovation, economic growth, and
societal well-being.

At the heart of a sustainable future for chemicals and energy lies the concept of a circular
economy. Unlike the traditional linear model of production and consumption, which often leads
to waste and environmental degradation, a circular economy emphasizes the continual use of
resources. This model encourages the design of products and processes that minimize waste,
promote recycling, and facilitate the reuse of materials. For instance, plastic waste is projected
to triple by 2040 if current trends continue, highlighting the urgent need for innovative waste
management strategies. In the chemical industry, this means developing processes that not only
reduce the consumption of raw materials but also enable the recovery and repurposing of by-
products [22,23]. The integration of waste-to-chemical processes can convert industrial waste
into valuable feedstocks, thus closing the loop and reducing reliance on virgin materials. For
example, companies like LanzaTech have successfully transformed industrial emissions into
ethanol, demonstrating the viability of this approach [24].

Another promising avenue for achieving a sustainable future in the chemical sector is
the utilization of renewable feedstocks. Biomass, for example, offers a renewable alternative to
fossil fuels, allowing for the production of chemicals and fuels through biorefinery processes. It
is estimated that biomass could meet up to 30% of global energy needs by 2030 [25]. Advances
in biotechnology and enzymatic processes are enabling the efficient conversion of biomass into
platform chemicals, which can serve as building blocks for a wide range of products. For
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instance, companies like Novozymes are developing enzymes that can convert agricultural
residues into bio-based chemicals. By shifting towards renewable feedstocks, the chemical
industry can significantly reduce its carbon footprint and contribute to a more sustainable
energy landscape.

In addition to these industrial efforts, numerous scientists and researchers are making
significant contributions to this field. Notable figures include Professor Sir Richard Friend from
the University of Cambridge, who has conducted groundbreaking research on organic
photovoltaics, aiming to improve solar energy efficiency for chemical processes [26]. His work
is crucial in enhancing the sustainability of energy sources used in chemical synthesis.

Another key researcher is Dr. Jennifer A. Doudna, a pioneer in CRISPR technology, who
is exploring its applications in bioengineering to optimize microorganisms for biofuel
production [27]. Her innovative approach could lead to more efficient conversion processes,
thereby supporting the chemical industry's shift toward renewable resources.

By shifting towards renewable feedstocks and embracing innovative practices, the
chemical industry can significantly reduce its carbon footprint and contribute to a more
sustainable energy landscape. These collaborative efforts among scientists, researchers, and
industry leaders underscore the critical importance of interdisciplinary approaches in tackling
the challenges of sustainability [28].

The urgency of this transition is further underscored by growing regulatory pressures
and consumer demand for eco-friendly products. Recent studies show that 75% of consumers
are willing to pay more for sustainable products, pushing companies to adopt greener practices.
Additionally, international regulations, such as the European Green Deal, set ambitious targets
for reducing emissions and promoting sustainable industry practices, necessitating a rapid shift
in how chemicals are produced and used [29].

Statistics also reveal the economic imperative for sustainable practices. The global
market for green chemicals is projected to reach $1 trillion by 2027, growing at a CAGR of over
10%. This shift not only highlights the increasing consumer preference for sustainable products
but also signals a significant economic opportunity for companies that invest in sustainable
technologies and practices. Furthermore, transitioning to a circular economy could save the
global economy approximately $4.5 trillion by 2030 through improved resource efficiency and
reduced waste, demonstrating that sustainability is not only an environmental imperative but
also a pathway to economic resilience and growth [6].

These factors collectively highlight the critical need for a sustainable transformation in
the chemical industry, making it essential to invest in innovative technologies and frameworks
that support this transition.

In addition to biomass, the utilization of carbon dioxide (COz) as a raw material presents
a unique opportunity for sustainable chemical production. CO2 utilization technologies aim to
convert waste COz into valuable chemicals and fuels, effectively addressing both energy
production and greenhouse gas emissions. This approach not only helps mitigate climate
change by reducing atmospheric CO2 levels but also creates new pathways for chemical
production [30,31]. Research in this field is rapidly advancing, with promising developments in
catalytic processes that enable the conversion of CO:z into a range of products, from fuels to
polymers. The integration of COz utilization into the chemical industry represents a significant
step towards achieving a circular economy and reducing the environmental impact of chemical
production [32].

The role of renewable energy sources in the sustainable future of chemicals cannot be
overstated. The transition from fossil fuels to renewable energy sources, such as solar, wind,
and hydropower, is essential for reducing the carbon intensity of chemical production. The
development of materials for solar energy conversion, such as photocatalysts and solar cells,
has gained momentum in recent years. These technologies enable the direct conversion of
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sunlight into chemical energy, offering a clean and renewable source of power [33-35].
Innovations in artificial photosynthesis and water splitting are at the forefront of this research,
aiming to mimic natural processes to produce fuels and chemicals sustainably. By integrating
renewable energy into chemical production, we can significantly reduce our dependence on
fossil fuels and mitigate the environmental impact of traditional processes [36].

Energy storage is another critical component of the sustainable future of chemicals and
energy. As renewable energy sources become more prevalent, the need for efficient energy
storage solutions is paramount. Advances in battery technology, fuel cells, and supercapacitors
are essential for enabling the widespread adoption of renewable energy. Research in this area
focuses on improving the efficiency, capacity, and sustainability of energy storage systems,
ensuring that energy generated from renewable sources can be effectively utilized when
needed. The development of new materials and technologies for energy storage will play a
pivotal role in the future of sustainable chemistry [37].

Moreover, the importance of catalysis in promoting sustainability cannot be overstated.
Catalysis serves as a key enabling technology that enhances the efficiency and selectivity of
chemical processes. The development of new catalysts, both homogeneous and heterogeneous,
is crucial for driving the transition to more sustainable practices [11,38,39]. Catalysts can
facilitate reactions under milder conditions, reduce energy consumption, and minimize waste
generation. As such, ongoing research in catalysis is essential for unlocking the full potential of
sustainable chemistry.

Collaboration among stakeholders is vital for realizing a sustainable future in chemicals
and energy. This includes partnerships between academia, industry, and government to foster
innovation and create supportive regulatory frameworks. Policymakers play a crucial role in
establishing incentives for sustainable practices, such as tax breaks for companies that invest
in renewable technologies or grants for research in sustainable chemistry [40]. Additionally,
public-private partnerships can facilitate the sharing of knowledge and resources, accelerating
the development and implementation of sustainable technologies.

Education and training are also essential components of a sustainable future. As the
chemical industry evolves, the workforce must be equipped with the skills and knowledge
necessary to navigate this transition. Educational institutions should prioritize sustainability in
their curricula, fostering a new generation of scientists and engineers who are well-versed in
sustainable practices and technologies. Furthermore, ongoing professional development
opportunities for current industry professionals will ensure that the workforce remains
adaptable and capable of meeting the challenges of a rapidly changing landscape [3].

Outlining a sustainable future for chemicals and energy requires a multifaceted
approach that encompasses innovative technologies, collaborative efforts, and a commitment
to circular economy principles. By embracing renewable feedstocks, utilizing CO2 as a raw
material, integrating renewable energy sources, and advancing energy storage solutions, the
chemical industry can significantly reduce its environmental impact and contribute to a more
sustainable energy landscape [41]. The role of catalysis, collaboration among stakeholders, and
education will be pivotal in driving this transition. As we move forward, it is essential to
recognize that the path to sustainability is not only a necessity but also an opportunity for
innovation, economic growth, and a healthier planet for future generations [42].

In recent years, significant achievements have been made in the field of sustainable
development within the chemical industry and energy sector, reflecting a growing awareness
of the need to transition to more environmentally friendly practices. One major advancement
is the development of new biotechnologies that enable the efficient conversion of agricultural
waste and other renewable resources into valuable chemicals. Companies like LanzaTech and
Novozymes have pioneered processes that utilize microorganisms to transform carbon dioxide
and biomass into useful products, including biofuels and biochemical [24,43].
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Additionally, there has been an increase in the number of chemical companies
implementing recycling technologies. For instance, BASF and Dow are actively working on
processes that convert plastic waste into new raw materials, contributing to a circular economy
and reducing the need for virgin resources. The development of bioplastics and biodegradable
materials, such as polylactic acid (PLA), represents another important step in minimizing
environmental impact, with these materials being utilized in packaging and various industries
to provide more sustainable solutions [29]. The implementation of advanced technologies and
processes, such as catalytic reactors and energy-efficient systems, has allowed many chemical
plants to significantly reduce energy consumption and lower greenhouse gas emissions.
Companies like SABIC and Shell have adopted carbon capture and storage (CCS) solutions,
which substantially decrease their carbon footprint. Many organizations are also beginning to
develop circular economy strategies where waste is converted into new products. For example,
Unilever has announced plans to make all its packaging materials recyclable or reusable by
2025, demonstrating a strong commitment to sustainability.

These achievements highlight that the chemical industry is moving toward a more
sustainable future by actively embracing innovation and adapting to the evolving demands of
the market and society.

Solar-Driven Chemistry

As the world grapples with the pressing challenges of climate change and resource
depletion, the need for innovative solutions in energy production and chemical synthesis has
never been more urgent. Solar-driven chemistry emerges as a transformative approach that
harnesses the abundant energy of the sun to drive chemical reactions, offering a pathway
toward sustainable practices in the chemical industry. This paradigm shift not only aims to
reduce reliance on fossil fuels. It also seeks to minimize greenhouse gas emissions and promote
the use of renewable resources [44]. In this exploration of solar-driven chemistry, we will delve
into its principles, applications, and the potential it holds for a sustainable future. At its core,
solar-driven chemistry leverages solar energy to facilitate chemical transformations. This
approach is inspired by natural processes, particularly photosynthesis, where plants convert
sunlight, water, and carbon dioxide into glucose and oxygen. By mimicking these processes,
researchers aim to develop systems that can convert solar energy into chemical energy,
effectively storing it for later use. The fundamental mechanisms involved in solar-driven
chemistry include photochemical reactions, photocatalysis, and artificial photosynthesis, each
playing a crucial role in the development of sustainable chemical processes [40,45].

Solar-driven chemistry can play a pivotal role in energy storage. As renewable energy
sources, such as solar and wind, become more prevalent, the need for efficient energy storage
solutions is paramount. Solar-driven chemical processes can convert excess solar energy into
chemical fuels, effectively storing energy for later use. This approach not only addresses the
intermittency of renewable energy sources but also provides a means to decarbonize sectors
that are challenging to electrify, such as heavy industry and transportation [46]. For example,
solar-driven processes can produce hydrogen or hydrocarbons that can be stored and utilized
as fuels, providing a versatile solution for energy storage and transportation. The work of
researchers like Dr. Jennifer A. Doudna also highlights the potential of CRISPR technology in
optimizing biological pathways for fuel production, further enhancing the efficiency and
sustainability of these processes [27].

Notable researchers in this field include Professor Michael Gritzel from Ecole
Polytechnique Fédérale de Lausanne, known for his pioneering work on dye-sensitized solar
cells [47]. His research has significantly advanced the efficiency of solar energy capture, laying
the groundwork for its application in artificial photosynthesis. Another key figure is Dr. Nathan
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S. Lewis from Caltech, who focuses on developing photoelectrochemical systems for solar fuel
production [48]. His innovative approaches to integrating catalysts and light-absorbing
materials have made strides in improving the efficiency of solar-driven chemical reactions.

In summary, while existing chemical synthesis and energy production methods largely
rely on fossil fuels and high-energy inputs, solar-driven chemistry - particularly through
photocatalysis and artificial photosynthesis - presents a substantial leap forward. By utilizing
renewable solar energy and promoting CO:2 conversion, these technologies represent a
significant advancement in our quest for sustainable practices in the chemical industry, aligning
more closely with global sustainability goals.

The integration of solar-driven chemistry into the chemical industry holds significant
potential for reducing carbon emissions and promoting sustainability. Traditional chemical
processes often rely on fossil fuels as both energy sources and feedstocks, contributing to
environmental degradation. By shifting to solar-driven methods, the industry can reduce its
carbon footprint and transition toward a more sustainable model. For instance, solar-driven
processes can be employed in the production of essential chemicals, such as ammonia, which is
traditionally produced through energy-intensive Haber-Bosch processes. Researchers are
exploring alternative pathways that could significantly lower energy consumption and
emissions associated with ammonia production by utilizing solar energy.

Photocatalysis is one of the most promising areas within solar-driven chemistry. It
involves the use of light-activated catalysts to accelerate chemical reactions. Photocatalysts can
harness sunlight to drive reactions that would otherwise require significant energy input. For
instance, titanium dioxide (TiO2) is a widely studied photocatalyst that can facilitate the
degradation of pollutants in water and air when exposed to UV light [49]. More advanced
photocatalysts are being developed to enable the conversion of CO2 into valuable chemicals,
such as methanol or hydrocarbons, effectively addressing both energy production and
greenhouse gas emissions [50] (Figure 2). This dual functionality positions photocatalysis as a
key player in the transition to a low-carbon economy [33].

CO, +H,0

Plastics Solar reforming

Waste
feedstocks

Circular use

Figure 2. Solar reforming as an emerging technology for circular
chemical industries
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Artificial photosynthesis represents another exciting frontier in solar-driven chemistry.
Researchers are working to create systems that mimic the natural process of photosynthesis,
aiming to produce fuels and chemicals directly from sunlight, water, and CO2. These systems
typically consist of light-absorbing materials, catalysts, and reaction chambers designed to
optimize the conversion of solar energy into chemical energy. For example, recent
advancements in the development of photoelectrochemical cells have shown promise in
efficiently converting solar energy into hydrogen fuel through the splitting of water molecules
[51]. This hydrogen can then be utilized as a clean energy carrier or as a feedstock for various
chemical processes [52].

Artificial Photosynthesis further distinguishes itself from prior methods by directly
mimicking the natural process of photosynthesis, which has evolved over millions of years to
efficiently harness solar energy [53]. Unlike earlier synthetic methods, which typically involve
complex, energy-intensive processes, artificial photosynthesis aims to achieve similar
efficiencies with minimal environmental impact. This innovative approach not only enhances
energy capture but also integrates carbon sequestration into the chemical synthesis process,
promoting sustainability in a way that traditional techniques cannot match [3].

In summary, while existing chemical synthesis and energy production methods are
largely reliant on fossil fuels and high-energy inputs, solar-driven chemistry, particularly
through photocatalysis and artificial photosynthesis, presents a substantial leap forward. By
utilizing renewable solar energy and promoting CO2 conversion, these technologies represent
a significant advancement in our quest for sustainable practices in the chemical industry,
aligning more closely with global sustainability goals [16].

The integration of solar-driven chemistry into the chemical industry holds significant
potential for reducing carbon emissions and promoting sustainability. Traditional chemical
processes often rely on fossil fuels as both energy sources and feedstocks, contributing to
environmental degradation. By shifting to solar-driven methods, the industry can reduce its
carbon footprint and transition toward a more sustainable model. For instance, solar-driven
processes can be employed in the production of essential chemicals, such as ammonia, which is
traditionally produced through energy-intensive Haber-Bosch processes. By utilizing solar
energy, researchers are exploring alternative pathways that could significantly lower energy
consumption and emissions associated with ammonia production. Moreover, solar-driven
chemistry can play a pivotal role in energy storage. As renewable energy sources, such as solar
and wind, become more prevalent, the need for efficient energy storage solutions is paramount.
Solar-driven chemical processes can convert excess solar energy into chemical fuels, effectively
storing energy for later use. This approach not only addresses the intermittency of renewable
energy sources but also provides a means to decarbonize sectors that are challenging to
electrify, such as heavy industry and transportation. For example, solar-driven processes can
produce hydrogen or hydrocarbons that can be stored and utilized as fuels, providing a
versatile solution for energy storage and transportation [40].

The development of solar-driven chemistry is not without its challenges. One of the
primary hurdles is the efficiency of solar energy conversion. While significant progress has
been made in recent years, many solar-driven processes still face limitations in terms of
efficiency and scalability. Researchers are actively working to improve the performance of
photocatalysts and artificial photosynthesis systems, exploring new materials and reaction
conditions to enhance energy conversion rates. Additionally, the integration of solar-driven
processes into existing industrial frameworks requires careful consideration of economic
viability and infrastructure development [54].

Collaboration among academia, industry, and government is essential for advancing
solar-driven chemistry. Public-private partnerships can facilitate the sharing of knowledge,
resources, and funding, accelerating the development and commercialization of solar-driven
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technologies. Furthermore, supportive policies and incentives can encourage investment in
research and development, fostering innovation in this field. As the global community
increasingly recognizes the importance of sustainability, the potential for solar-driven
chemistry to contribute to a low-carbon future is gaining traction. Education and outreach also
play a crucial role in promoting solar-driven chemistry [55]. Raising awareness about the
benefits and potential applications of solar-driven processes can inspire the next generation of
scientists and engineers to pursue careers in this field. Educational institutions should
prioritize sustainability in their curricula, equipping students with the knowledge and skills
needed to tackle the challenges of the future. Additionally, public engagement initiatives can
help foster a broader understanding of the importance of solar-driven chemistry in addressing
climate change and promoting sustainable practices [56].

Solar-driven chemistry represents a promising avenue for achieving a sustainable future
in energy production and chemical synthesis. By harnessing the power of the sun, this
innovative approach has the potential to revolutionize the chemical industry, reducing reliance
on fossil fuels and minimizing environmental impact [57]. Through advancements in
photocatalysis, artificial photosynthesis, and energy storage, solar-driven chemistry can
contribute to alow-carbon economy while addressing the pressing challenges of climate change
[58]. As research and development in this field continue to progress, collaboration among
stakeholders and a commitment to education will be essential for realizing the full potential of
solar-driven chemistry. Embracing this transformative approach is not only a necessity for
sustainability but also an opportunity for innovation and economic growth in the years to come
[29].

A major plus point of photosynthesis is its role in absorbing carbon dioxide, which helps
reduce the concentration of this greenhouse gas in the atmosphere. This makes photosynthesis
an important process in the fight against climate change. However, photosynthesis also has its
disadvantages [59,60]. Natural photosynthetic systems have a low solar energy conversion
efficiency of about 1-2%. This limits their potential application as a direct source of energy for
technological needs.

Photocatalysis, on the other hand, is an artificial process that uses light to accelerate a
chemical reaction using a photocatalyst. This process is being actively studied for applications
such as water purification, separation of water into hydrogen and oxygen, and carbon dioxide
utilization. One of the main advantages of photocatalysis is that it can be used to create
hydrogen, a clean and renewable fuel. Also, photocatalysis can be used for environmentally
friendly processes such as the degradation of pollutants in air and water [56,61,62]. However,
photocatalysis also has its limitations. Current photocatalysis technologies often require
expensive materials such as titanium or platinum-containing catalysts, which limits their
widespread application. In addition, the efficiency of photocatalysis under real-world
conditions is sometimes low because strong solar illumination or even ultraviolet radiation is
required, limiting its use in sunlight-deficient regions.

If we compare photosynthesis and photocatalysis with other energy conversion
technologies, such as solar cells (photovoltaic panels), the latter have a much higher solar
energy conversion efficiency of about 15-20% [63,64]. However, solar panels require
significant capital investment and cannot directly participate in carbon dioxide conversion or
biomolecule synthesis processes, making them less versatile than photocatalysis or
photosynthesis [65,66].

Thus, photosynthesis and photocatalysis have their unique advantages related to their
environmental friendliness and potential to reduce carbon dioxide concentrations.
Nevertheless, their limited efficiency and high material costs make them less attractive
compared to conventional energy generation technologies. Nevertheless, active research in
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these areas is ongoing, which could lead to significant increases in their efficiency and cost
reductions in the future.

Impact of Catalysis

Catalysis plays a pivotal role in the transition toward sustainable chemistry and energy
production, serving as a key enabler for the development of efficient, low-carbon processes. As
the world shifts its focus to renewable energy sources and sustainable practices, the
importance of catalysis becomes increasingly pronounced. Catalysts are substances that
accelerate chemical reactions without being consumed in the process, allowing for more
efficient transformations of raw materials into valuable products. This efficiency is crucial in
minimizing energy consumption and reducing waste, thereby addressing the environmental
challenges posed by traditional chemical processes [67].

In the context of solar-driven chemistry, catalysis is essential for harnessing solar energy
to drive chemical reactions. Photocatalysts, for instance, utilize sunlight to facilitate reactions
that convert CO2 into useful chemicals or fuels, effectively addressing both energy production
and greenhouse gas emissions. The development of advanced photocatalysts that can operate
under visible light and exhibit high selectivity is a significant area of research, with the potential
to revolutionize how we produce chemicals sustainably. Moreover, catalysis is integral to the
concept of circular economy, where the focus is on minimizing waste and maximizing resource
efficiency. Catalytic processes can enable the recycling of materials, such as converting waste
plastics back into usable chemicals or fuels. This not only reduces the environmental impact of
waste but also conserves valuable resources, aligning with the principles of sustainability.

The integration of catalysis into renewable energy systems, such as hydrogen
production through water splitting, further exemplifies its impact. Catalysts that facilitate the
efficient conversion of solar energy into hydrogen fuel can help decarbonize sectors that are
challenging to electrify, such as heavy industry and transportation. This shift not only promotes
energy security but also contributes to a significant reduction in carbon emissions [54]. In
summary, catalysis is a cornerstone of the new sustainable chemistry landscape. Its ability to
enhance reaction efficiency, enable the use of renewable resources, and facilitate waste
recycling positions it as a critical technology in the quest for a low-carbon future. As research
continues to advance in this field, the potential for catalysis to drive innovation and
competitiveness in the chemical industry remains immense, paving the way for a more
sustainable and environmentally friendly approach to chemical production.

Molecular catalysis represents a transformative approach in the field of chemistry,
offering unique opportunities to enhance reaction efficiency and selectivity at the molecular
level. Unlike traditional heterogeneous catalysts, molecular catalysts are defined by their
precise structures, allowing for tailored interactions with substrates. This specificity enables
the acceleration of chemical reactions while minimizing the formation of unwanted by-
products, which is crucial for sustainable industrial processes.

One of the most significant advantages of molecular catalysis is its ability to facilitate
complex multistep reactions. By employing well-defined molecular catalysts, chemists can
streamline synthetic pathways, reducing the need for multiple reaction steps and thereby
improving overall efficiency. This capability is particularly valuable in the production of fine
chemicals and pharmaceuticals, where high selectivity and yield are paramount [68].

Recent advancements in molecular catalysis have also opened new avenues for
addressing environmental challenges. For instance, the development of catalysts that can
efficiently convert COz into valuable chemicals not only helps mitigate greenhouse gas
emissions but also contributes to the circular economy by recycling waste into useful products.
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Additionally, molecular catalysts can be designed to operate under mild conditions, further
reducing energy consumption and enhancing sustainability.

Prominent researchers in this field include Professor Frances H. Arnold, who was
awarded the Nobel Prize in Chemistry for her pioneering work on the directed evolution of
enzymes, a subset of molecular catalysts [69]. Her research has led to the development of more
efficient catalysts that can facilitate complex reactions with high selectivity. Another notable
figure is Dr. David W.C. MacMillan, whose work on organocatalysis has transformed the field by
demonstrating how small organic molecules can serve as powerful catalysts [70]. His
innovations have enabled more sustainable reaction conditions and have applications in
pharmaceutical synthesis, where minimizing waste is crucial. Furthermore, Dr. Carolyn R.
Bertozzi has made significant contributions by designing molecular catalysts that can
selectively functionalize biomolecules [71]. Her research not only advances synthetic chemistry
but also has implications for biomedicine, allowing for the development of targeted therapies
with improved efficacy. These scientists and their research exemplify the transformative
potential of molecular catalysis in both synthetic efficiency and environmental sustainability,
illustrating how innovative approaches can lead to practical solutions in addressing global
challenges.

Moreover, the integration of molecular catalysis with emerging technologies, such as
artificial intelligence and machine learning, is paving the way for the discovery of novel
catalysts with unprecedented performance. By leveraging computational methods, researchers
can predict catalyst behavior and optimize reaction conditions, accelerating the development
of new catalytic systems. Molecular catalysis holds immense potential for revolutionizing
chemical processes. Its ability to enhance efficiency, selectivity, and sustainability positions it
as a key player in the future of green chemistry. As research continues to evolve, the
possibilities for molecular catalysis to drive innovation and address global challenges are
boundless, making it an exciting frontier in the quest for sustainable solutions.

New Materials for Energy

The development of new materials is crucial for advancing energy technologies and
achieving a sustainable future. As the world increasingly turns to renewable energy sources,
the need for innovative materials that can enhance energy conversion, storage, and efficiency
becomes paramount. These materials play a vital role in various applications, including solar
energy, batteries, fuel cells, and thermoelectric devices [72].

One of the most promising areas of research is in the field of solar energy conversion.
Advanced materials, such as perovskite solar cells and quantum-dot solar cells, have shown
remarkable efficiency improvements and cost-effectiveness compared to traditional silicon-
based solar cells. Additionally, the development of photoelectrochemical cells that utilize novel
catalysts can facilitate the conversion of sunlight into chemical fuels, such as hydrogen, thereby
providing a clean energy source [73].

In the realm of energy storage, new materials are essential for improving the
performance of batteries and supercapacitors. For instance, the exploration of nanostructured
materials, such as graphene and transition metal oxides, has led to significant advancements in
lithium-ion batteries, enhancing their capacity, charge/discharge rates, and overall lifespan.
Furthermore, the development of solid-state batteries, which utilize solid electrolytes instead
of liquid ones, promises to increase safety and energy density, making them a viable option for
electric vehicles and portable electronics [74].

Fuel cells, which convert chemical energy directly into electricity, also benefit from the
innovation of new materials. The design of advanced catalysts, particularly those that can
operate efficiently at lower temperatures, is critical for enhancing the performance and
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reducing the costs of fuel cells. Research into alternative materials, such as non-precious metal
catalysts, aims to make fuel cell technology more accessible and economically viable [75,76].

Thermoelectric materials, which can convert waste heat into electricity, are another area
of focus. The development of high-performance thermoelectric materials can improve energy
efficiency in various applications, from industrial processes to automotive systems. The
exploration and development of new materials for energy applications are vital for addressing
the global energy challenge. By enhancing energy conversion, storage, and efficiency, these
materials not only contribute to the advancement of renewable energy technologies but also
play a crucial role in the transition toward a sustainable, low-carbon future. As research
continues to progress, the potential for innovative materials to revolutionize the energy
landscape remains significant.

Conclusion

The pursuit of new materials for energy applications is a cornerstone of the transition
to a sustainable and low-carbon future. As the world grapples with the challenges of climate
change and the depletion of fossil fuels, innovative materials are essential for enhancing the
efficiency and effectiveness of renewable energy technologies. From advanced solar cells and
high-performance batteries to efficient fuel cells and thermoelectric materials, the
development of these new materials holds the promise of transforming how we generate, store,
and utilize energy.

The integration of cutting-edge research in materials science with emerging
technologies, such as nanotechnology and artificial intelligence, further amplifies the potential
for breakthroughs in energy applications. By tailoring materials at the molecular and nanoscale,
scientists can create systems that not only improve energy conversion and storage but also
reduce environmental impact and promote sustainability. As we move forward, continued
investment in research and development, along with collaboration across disciplines, will be
crucial in unlocking the full potential of new materials. The innovations that arise from this
endeavor will not only drive technological advancements but also contribute to a more
sustainable and resilient energy landscape. Ultimately, the future of energy lies in our ability to
harness the power of new materials, paving the way for a cleaner, more efficient, and
sustainable world.
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0. Kapran
Xumusnwlk Folabimoap HaHe uHiceHepus kagedpacsl, Kadup Xac ynusepcumemi, Cmaméya,
Typkus

Xumus GoJsialiaFbIH 6aFAapJ/iay: TYpaKThl MHHHOBALMSHbIH, 6aCbIMABIKTAPbI MEH
MYMKiHAiKTepi (1oJy)

AngaTna: bys mosy MakKasacblHAA COHFBI OipHellle OHXbLIAbIKTA HUKEJIb THAPOKCU I
OOMBbIHIIA JKYPri3i/ireH 3epTTeyJsiepre woJy >Kacanajbl, 6yn ¢uU3MKaZa Ja, XxuMusja Ja
MaHbI3/Ibl MHXKEHEPJIIK KoJiJlaHba/bl, acipece GaTapessapZa MaHbI3Abl MaTepuas. On eki
oearisi monuMopdTapabiH, a-Ni(OH)2 »xoHe [B-Ni(OH)2 KypblIbIMAApbIH cUNATTayJaH
6actasaZbl. Makana/ia COHbIMEH KaTap HUKeJIb TUIPOKCU/IH/E XKUi Ke3/leCeTiH TuipaTanus,
KabaTTacy akayJapbl, MeXaHUKaJIbIK KepHeyJep >XoHe HOHABIK KOCHaJapblH KOCbLIybl
CUSKTbl OpTypJsi Oy3buiysap 3epTTeseni. bailslaHbicTbl MaTepua/sifap, COHBIH, iliHAe
MHTEepKaJIMpJIeHTeH A-TybIH/blJIapbl ME€H Heri3ri HUKeJsb Ty3Japhl Ja TajakKblaaHazbl. oy
HUKEeJIb TUAPOKCUIH CUHTE3/eYAIH XUMHUSJIBIK )XoHe 3JIEKTPOXUMHUSJIBIK TYH/bIPY, 30J1b-TeJlb
CUHTEe3l, XUMUSAJBIK KapTaw, THUAPOTEPMUSJIBIK >KoHe COJBOTEPMHUSAJBIK CHUHTES3,
3JIEKTPOXUMMHUSJIBIK, TOTBIFY, MUKPOTOJIKbIH KOMeriMeH CHUHTe3/ey Ko9He COHOXUMUSAJBIK,
dAicTep CUSAKTHI OipHellle 9icTepiH >XKUHAKTanWAbl. COHbIHAA HUKEJIb TUPOKCUAIHIH Oerii
dU3MKaNbIK KACUETTEePi — MarHUTTIK, AipiAiK, ONTHUKAJBIK, 3JIEKTPJIiK }KoHEe MeXaHUKAaJIbIK,
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— 3eprTeseni. KopbITbIHABI 661iM O0Cbl MaTepHUaJAapblH dJieyeTTi KyH/bl KaCHeTTepiHiH,
KbICKAllla Ma3MYHbIH YK9He HUKeJIb THAPOKCHU/Ii HeTi3iHAeri 6erici3 y/risiepai aHbIKTay KoHe
cunaTTay 9AiCTepiH YChbIHABbL.

Tyuin ce3aep: TypakTbuiblK, buoeHzey 3aybiThl, KyH 3HeprusicelH TypJieHAIpY,
JHeprugaHbl caKkTay, KeMipKpIIIKbLI ra3blH nanganany, Kataaus, UUpKyagp/blK 3KOHOMUKA,
KanapTbLiaTeIH pecypcTap.

0. Kapran
Kagpedpa xumuueckux Hayk u uHxceHepuu, YHusepcumem Kadupa Xaca, Cmaméys, Typyus

HaBuranus B 6yAyliee XUMHUHU: IPUOPUTETHI U BO3MO>KHOCTH AJIS1 YCTOMYMBBIX
MHHOBaUui (0630p)

AHHoOTaumMsa: B 3cce uccienyeTcs MeHSIOUUNCA JaHAMAPT 3IHEPreTUYECKOro U
XMMHY€eCKOIo MPOU3BO/ICTBA, C YIIOPOM Ha PacTylllee BHUMaHUe K yCTOMUMBOCTH 3a NOC/Ie/HEE
JlecsiTuieTHe. B HeM ocBelaloTCsl KJI0UeBble 00J1aCTH MCCIe/JO0BAaHUN, KOTOpPble MPUBJIEKIN
3HAa4YMTeJbHOE BHHUMaHWeE, TaKHe KakK OuomnepepaboTka, MNpeoOpa3oBaHHUE COJIHEYHOH
3HEpPruy, MaTepUasbl /il XpaHEHUsI IHEPTHUU U HUCIOJIb30BaHUE YTIJIEKHUCI0r0 ra3da. ABTOPHI
MOJAYEPKHUBAKT HEOOXOJMMOCTh UHHOBAIIMOHHBIX pellleHWH B KaTasv3e, MPOeKTHUPOBAHUU
IPOLIECCOB U MCIOJIb30BaHUU AJbTEPHATHBHOTO ChIpbs M HCTOYHUKOB 3Hepruu. OHHU
BBICTYMAIOT 32 60Jiee KOMIIJIEKCHBIN B3TJIs1] HA yCTOMYHUBOCTb, YU ThIBASA KAK IKOHOMHYECKHE,
TaK U COIMAJIbHO-3KO0JIOTHYecKre GaKTOPhI, U MOOIIPSIOT JaAbHOBHUAHBIHN MOIX0/ K PellleHUI0
OyayuIMx TeHAEHIUN U npobJieM. llesib 3TOro aHasiM3a — MOTUBUPOBATH MCCIe0BaTe el U
YYaCTHUKOB OTPAC/IM Ha U3yYeHHe HOBbIX TEXHOJIOTUHM U METO/I0B, KOTOpPbIE TPUBEAYT K

6oJsiee yCTOMUMBOMY OyAyIleMYy B 06/1aCTH XMMUHW U SHEPTETUKHU.

KinwuyeBble cioBa: YcroluuBoe pa3BuTue, buonepepa6oTka, I[IpeobpasoBaHue
COJIHEYHOW 3Hepruy, XpaHeHre 3Hepruy, Y TUIM3anua yriaeKkucaoro rasa, Kataaus, Kpyrosas
9KOHOMUKa, Bo306HOB/ISIeMble pecypChl.
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