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Introduction

When we began to write this review of nickel hydroxides, our goal was to identify the most
valuable aspects of these industrially important materials for the scientific community. At that
time, research was mainly concerned with water, hydroxyl and oxyhydroxyl concentrations in
nickel oxide thin and bulk films [1]. This led to concepts such as bound water, structural water,
compositional water, and adsorbed water, all of which are essential for understanding
corrosion and battery performance. However, advanced analytical techniques were not yet
available. Recent developments have significantly improved the understanding of these
materials. A simple online search using the keyword "nickel hydroxide" reveals thousands of
publications, highlighting their importance. This wealth of literature can be daunting, especially
for new students or researchers unfamiliar with the experimental methods in question [2, 3].

Materials and methods

Nickel hydroxides have a wide range of applications in chemistry, physics and engineering.
They have been used since the early 20th century as electrode materials in battery technologies.
They also play an essential role in the electrochemical processes of nickel and nickel-based
alloys or in surface layers formed during corrosion [4, 5]. Research in the late 20th century
focused mainly on these two areas. In the late 1960's, Bode et al. proposed a simple model to
explain the electrochemical oxidation of nickel hydroxides to nickel(IIl) oxyhydroxide and
subsequent reduction to nickel(II) hydroxide. This model includes two nickel hydroxide phases,
a- and 3-Ni(OH)z, and two oxidized phases, 3- and y-NiOOH. Although the complete mechanism
is more complex, this model and some modifications (such as the transition from y-NiOOH to
-Ni(OH)z still provide a useful framework for understanding the processes occurring in nickel
hydroxide battery electrodes[6, 7].

Nickel-based batteries, including nickel-cadmium (NiCd) and nickel-metal hydride (NiMH),
are widely used in modern technology [8, 9]. Recently, McBreen examined the importance of
nickel hydroxides in contemporary battery applications. However, the use of nickel hydroxides
has expanded beyond traditional battery and corrosion research into areas such as
photocatalysis, electrocatalysis, electrosynthesis, supercapacitors, electrochromic devices and
electrochemical sensors. Extensive research has deepened the understanding of these
materials beyond the basic two-phase model [10]. Innovations in nanotechnology have led to
the development of complex structures such as nanoflowers and nanoribbons, and hundreds of
synthesis methods are now available, including advanced techniques such as microwave-
assisted synthesis and stereochemistry.

This increasing complexity makes nickel hydroxides both fascinating and challenging.
Detailed understanding of structures and properties can be difficult, and choosing the right
synthesis method for particular chemical or physical attributes at an appropriate scale can be
overwhelming [11]. To help overcome these challenges, this review provides an overview of
nickel hydroxide materials and their modern applications, aimed at an interdisciplinary
audience that does not require specialized knowledge. It begins by discussing the different
nickel hydroxide structures and common structural disorders, followed by a categorization of
common synthesis methods with advice on their appropriate use. Finally, the physical
properties and analytical characterization of nickel hydroxides are evaluated [9, 12].
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Results and discussion

The structure of nickel hydroxides, especially nickel (II) hydroxide (Ni(OH),), has attracted
considerable interest due to its unique properties and applications in a variety of fields
including catalysis, energy storage, and environmental remediation. Nickel hydroxides can
exist in various polymorphic forms, primarily a-Ni(OH), and B-Ni(OH),, each with unique
structural characteristics and stability [13, 14].

B-Ni(OH), is isostructurally related to brucite (Mg(OH),) and occurs naturally as the mineral
theophrastite. This phase is characterized by trigonal symmetry, meaning that the a and b axes
are not orthogonal, forming an angle of 120°. The unit cell parameters for 3-Ni(OH), are
determined using X-ray and neutron diffraction. The B-phase structure consists of layers of
nickel hydroxide that are arranged in a specific manner, giving it unique properties [6, 7].

a-Ni(OH), x H,O0 is a polymorph consisting of layers of 3-Ni(OH), intercalated with water
molecules. The degree of hydration (x) can vary, typically ranging from 0.41 to 0.7. Although
the material is initially hydrated, water molecules are often omitted from the formula, resulting
in the designation a-Ni(OH),. The a-Phase is known for its structural disorganization, which
can affect its physical properties [15, 16].
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B-Ni(OH). B-NiOOH

Figure 1. Structure of a- and - forms of nickel hydroxide [17]

These differences in the structures of the a- and B-forms of nickel hydroxide determine their
stability and characteristics, making them important for applications in various technologies
[18].

Both forms of nickel hydroxides, o-Ni(OH), and B-Ni(OH),, have unique structural
characteristics and behavior, making them important for various applications, especially in the
fields of energy storage and catalysts. Structural disorder in nickel hydroxides refers to the
various types of irregularities and variations in the crystal structure that can occur in the a and
B phases, and this disorder can significantly affect the properties and behavior of the material
[19].

The main aspects of structural disorder include the inclusion of foreign ions, variable
hydration, and crystal defects. The presence of impurities or foreign ions can disrupt the regular
arrangement of nickel and hydroxyl ions in the crystal lattice. The degree of hydration can vary,
leading to differences in the arrangement of water molecules within the structure, affecting the
stability and reactivity of the material. Crystalline defects, such as irregularities in the
crystalline layer stacking sequence, can lead to broadening of X-ray diffraction peaks and affect
the overall crystallinity of the material [20].
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X-ray diffraction (XRD) analyses showed that the presence of a structural disorder results in
peak widths, indicating inhomogeneities in the crystal structure. Neutron diffraction further
confirmed the presence of these crystal defects and revealed the arrangement and distribution
of atoms in the different phases (Figure 2). Different notations, such as a_am, a*, o', IS, and _bc,
are used to describe the disorder types in nickel hydroxides, which helps identify the parent
structure and the disorder types observed. For example, some samples identified as f_bc were
found to be B-Ni(OH), with a layer stacking disorder [20-22]. These designations help
researchers identify the parent structure and characteristic types of disorder that can affect the
physical and chemical properties of a material.

The designations have the following meaning: a_am indicates amorphous or partially
crystalline forms of a-Ni(OH),, a* may indicate specific variations in the structure of a-Ni(OH),
that may be related to changes in hydration or impurities, a' is often used to indicate
modifications of a-Ni(OH), with specific structural changes, IS can indicate intercalated
structures where ions or molecules are located between layers, and [3_bc indicates 3-Ni(OH),
with disorder in the stacking of the layers, which can affect its electrolytic properties.

For each of these designations, differences in the XRD spectra can be expected. For example,
samples identified as 3_bc may show broader peaks compared to well crystallised 3-Ni(OH),,
indicating the presence of structural disorder. Variations in the intensity and width of the peaks
can be observed in the spectra, which may be due to differences in crystal structure and the
presence of defects.

For a more detailed analysis, specific XRD spectra for the samples identified as a_am, a*, o',
IS and B_bc should be given. This will allow a visual comparison of their characteristics such as
peak positions, peak widths and intensities. For example, the spectrum of 3_bc may show peaks
that are wider and less intense compared to pure (3-Ni(OH),, indicating the presence of layer
stacking disorder.

Thus, a comparative analysis of XRD results for different labelling can provide valuable
information on the structural characteristics of nickel hydroxides and their potential
applications. For a deeper understanding, it is necessary to perform experimental studies and
compare the obtained data with the known characterisation of different forms of Ni(OH)s,.
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Figure 2. XRD pattern of the as-prepared Ni(OH). [23]
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The peaks in the XRD spectrum correspond to certain planes of the crystal lattice. For -
Ni(OH),, for example, one can expect peaks corresponding to planes (003), (006), (009) and
others, which indicate periodicity in the crystal structure. The width of the peaks may indicate
the presence of structural disorder. Wider peaks often indicate less crystal homogeneity and
more defects in the crystal lattice. This may be due to mechanical stresses, hydration or the
presence of impurities.
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Figure 3. X-ray diffraction patterns of Ni(OH): films on Ni substrates collected using a
Cu K, X-ray source [24]

The intensity of the peaks can vary depending on the degree of crystallinity and the presence
of different phases in the sample. For example, if both a- and -forms of Ni(OH), are present in
the sample, this can lead to variations in the intensity of certain peaks. For a more accurate
analysis, it is important to compare the peaks obtained with reference data for Ni(OH), to
determine which peaks correspond to specific planes and how they change depending on the
synthesis conditions.

The presence of structural disorder in nickel hydroxides can lead to significant changes in
the physical and chemical properties, including their electrochemical behavior, stability, and
reactivity. Understanding and controlling this disorder is key to optimizing the performance of
nickel hydroxides in applications such as batteries and catalysts. Overall, structural disorder is
an important factor in the study of nickel hydroxides, influencing their synthesis,
characterization, and applications in various fields.

These effects have important practical implications. For example, well-crystallized [3-
Ni(OH), exhibits lower electrochemical activity compared to disorganized [3-Ni(OH), materials.
However, the relationship between structural disorder and measured properties is not always
clear. Replacing nickel sites with cobalt improves the proton conductivity of §-Ni(OH),, but it is
unclear whether this is due to an increase in proton vacancies or to an increase in stacking
distortion, which also affects the electrochemical activity of nickel hydroxide electrodes [21,
25-27]. It is therefore important to identify all possible forms of the distortion.
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Stacking distortion in nickel hydroxides is a significant structural phenomenon that affects
the properties and performance of the material, especially in electrochemical applications such
as batteries and supercapacitors. Stacking implies the presence of disturbances in the
arrangement of crystalline layers, which can disrupt the ideal stacking sequence of hydroxide
layers in the crystal structure [21]. In nickel hydroxides, especially in the 3-phase, the structure
consists of stacked layers of Ni(OH), [28]. Ideally, these layers are arranged in a specific
sequence, but stacking distortion can introduce variations such as rotations or displacements
of the layers. For example, stacking can occur when a layer rotates around the c-axis or is
displaced in the ab-plane, resulting in a disordered arrangement. This disorder can be
characterized by different stacking motifs that can be visualized by X-ray diffraction (XRD),
showing peak broadening due to the loss of long-range order [20, 29].

The presence of stacking defects can significantly affect the physical and chemical properties
of nickel hydroxides. For example, they can alter the ionic conductivity and electrochemical
performance of the material by changing the pathways available for ion transport. In addition,
stacking disruptors can lead to changes in the vibrational modes of the material that can be
detected using spectroscopic techniques such as Raman and infrared spectroscopy. These
techniques often reveal additional O-H stretching modes associated with the disruptor,
providing insight into the structural changes occurring in the material [30, 31].

Stacking distortion can also affect the stability and reactivity of nickel hydroxides. The
presence of defects can improve the material's ability to accommodate foreign ions or facilitate
the hydration process, which can be beneficial in certain applications. However, excessive
stacking distortion can lead to decreased crystallinity and poor electrochemical performance
[26, 32, 33]. Overall, stacking distortion is an important aspect of the structural performance of
nickel hydroxides. Understanding this distortion is critical to optimizing the design and
functionality of nickel hydroxide-based materials, especially in energy storage and conversion
applications where structural integrity and electrochemical efficiency are of utmost importance
[34-36].

Hydration is a critical aspect that significantly affects the structural and electrochemical
properties of nickel hydroxides. Hydrated nickel hydroxides, especially 3-Ni(OH),, play
important roles in various applications, especially in energy storage systems such as batteries.
The hydrated form of nickel hydroxide can be represented as Ni(H,0)x,, where x typically
ranges from 0.1 to 0.4, indicating the presence of water molecules loosely bound to the nickel
cations [19].

The hydration process affects the interlayer spacing in the crystal structure of nickel
hydroxides. When water molecules are incorporated, the interlayer spacing can increase by
approximately 0.1 A. This widening is critical to the electrochemical activity of the material, as
it facilitates ion transport during redox reactions. However, the role of stacking disruptors in
these measurements is not fully understood, complicating the interpretation of hydration
effects [30, 33, 37, 38].

Thermogravimetric analysis (TGA) is a common method used to assess hydration levels in
nickel hydroxides [39]. This technique involves measuring the mass of a sample while gradually
increasing the temperature. For 3-Ni(OH),, TGA shows that surface water can be removed at
relatively low temperatures (around 80-90°C), while embedded water is completely removed
at higher temperatures (around 160°C). Water removal through thermal dehydration can result
in a 10-14% reduction in the charging capacity of nickel hydroxide battery electrodes,
highlighting the importance of hydration in maintaining the performance of these materials.

Thermogravimetric analysis (TGA) can show how the mass of a sample changes with heating.
For example, for a-Ni(OH),, one would expect to see a loss of water associated with dehydration
at around 100-200°C, which would be seen as a sharp decrease in mass. Upon further heating,
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e.g., to 300-400°C, the decomposition of nickel hydroxide to form nickel oxide (NiO) may be
observed, which would also be reflected in the TGA as an additional mass loss [40].

Nickel hydroxide (Ni(OH);) exists in two polymorphic forms: alpha (a) and beta (), each
with specific properties and reactivity. The alpha form of Ni(OH), is often used as the positive
electrode in nickel metal hydride (NiMH) and nickel-cadmium (NiCd) batteries due to its high
electrochemical activity resulting from its larger surface area and better conductivity compared
to the beta form. Also, a-Ni(OH), serves as a catalyst for the oxidation of organic compounds
and can be used in hydrogenation reactions, accelerating the processes due to its layered
structure. Another important application of nickel alpha hydroxide is in carbon dioxide
absorption, where reaction with CO, produces nickel carbonate, which finds application in
environmental carbon capture projects.

The beta form Ni(OH), is more stable in alkaline environments and is often used to produce
nickel oxide (NiO) when heated, which is then used in catalysis and as a pigment. Although o-
Ni(OH), is generally preferred in batteries, 3-Ni(OH), can also be used, especially in systems
with lower capacity requirements and reversible processes. The beta form demonstrates its
reactivity in acidic environments, where it reacts with acids to form nickel salts and water,
emphasising its flexibility in chemical processes when the pH changes.

Thus, a-Ni(OH), is more reactive and finds applications in batteries, catalysis and carbon
dioxide capture, while 3-Ni(OH), is more stable and is used in the production of nickel oxide
and other applications requiring reactions in acidic environments [16].

The presence of embedded water can also be detected using vibrational spectroscopic
techniques such as X-ray and infrared (IR) spectroscopy. These techniques allow the
identification of additional O—H vibrational modes associated with hydration, providing insight
into the structural changes that occur during hydration and dehydration [41]. Hydration is thus
a key characteristic of nickel hydroxides that affects their structural integrity, electrochemical
performance, and overall functionality in various applications, especially in energy storage
technologies. Understanding the hydration dynamics is critical to optimize the performance of
nickel hydroxide-based materials [42].

Infrared spectroscopy (IR) can be used to identify functional groups in a sample. For
example, in the IR spectrum for a-Ni(OH), one can expect to see characteristic absorption
bands in the 3200-3600 cm-* region, which is associated with O-H bond vibrations, as well as
bands in the 500-600 cm-* region corresponding to Ni-O vibrations. For B-Ni(OH),, similar
bands can be observed, but with differences in intensity and width, which may indicate
differences in crystal structure and degree of hydration [43].

Ion exchange and foreign ion incorporation are key processes that significantly affect the
structural, electrochemical, and functional properties of nickel hydroxides, especially in
applications such as batteries, supercapacitors, and catalysts [42]. These processes involve the
replacement of nickel ions in the hydroxide lattice by other cations or the introduction of anions
into the interlayer spaces, which results in a variety of structural modifications and increases
in material performance.

Ionic substitution involves the replacement of nickel ions (Ni**) in the nickel hydroxide
lattice by other cations such as cobalt (Co**), magnesium (Mg?*), calcium (Ca**), or aluminum
(AI**). This substitution can occur in varying proportions, resulting in materials with the
general formula Ni;_4M,(OH),, where M represents the replaced metal and x indicates the
degree of substitution. The introduction of foreign cations can lead to several beneficial effects
[21]. For example, replacing nickel with cobalt improves the electrochemical activity of nickel
hydroxides, probably due to increased proton conductivity or increased layer stacking
distortion, which facilitates ion transport.

Ion substitution effects are often associated with changes in the crystal structure and lattice
parameters. For example, the interplanar spacing (c-axis) can decrease with increasing cobalt
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content due to the smaller ionic radius of Co?* compared to Ni** [44]. This change can affect the
electrochemical properties of the material, such as charge capacity and cycle stability. In
addition, the presence of foreign cations can introduce new active sites for redox reactions,
which further improves the electrochemical performance of the material [13].

Insertion of foreign ions involves the introduction of anions or other ionic species into the
interlayer spaces of nickel hydroxides. This process can significantly change the structural and
functional characteristics of the material. Common anions that can be incorporated include
nitrate (NO57), sulfate (SO,%7), carbonate (CO3%*7), and various organic anions [11].
Incorporation of these anions can result in an increase in the interlayer distance, often referred
to as the "gallery height", which can facilitate ion transport and improve the electrochemical
performance of the material. For example, replacing hydroxide ions with sulfate ions can
significantly increase the interlayer distance, which improves ion access to active sites during
reactions.

The stability of the incorporated anions is influenced by their size and charge. Larger anions
tend to occupy the interlayer spaces more stably, leading to significant structural expansion.
For instance, the incorporation of adipate anions can result in an interlayer spacing increase of
up to 65% compared to the parent structure. This expansion can enhance the accessibility of
the hydroxide layers for ion exchange and improve the overall electrochemical activity [7].

Moreover, ionic substitution and foreign ion incorporation can also affect the thermal
stability and mechanical properties of nickel hydroxides. The presence of foreign ions can lead
to changes in the bonding characteristics within the lattice, potentially enhancing the material's
resistance to thermal degradation. In summary, ionic substitution and foreign ion incorporation
are essential processes that modify the structural and functional properties of nickel
hydroxides [16]. These modifications can lead to enhanced electrochemical performance,
improved stability, and greater versatility in applications. Understanding these processes is
crucial for the design and optimization of nickel hydroxide-based materials, particularly in the
context of energy storage and conversion technologies, where performance and efficiency are
paramount. By tailoring the ionic composition of nickel hydroxides, researchers can develop
advanced materials that meet the demands of modern energy applications [16].

Internal mechanical stress can arise from several factors. One significant cause is the
incorporation of large polyatomic anions, such as nitrate, into the lattice sites or intercalation
spaces of a-Ni(OH),, which is likely to induce mechanical stress. During the chemical aging
process from a- to 3-Ni(OH),, internal stress develops due to the changes in the unit cell c-
parameter (from 8.0 to 4.6 &), resulting in compressive and tensile forces along the c-direction
in the a- and 3-phases, respectively [6]. Mechanical stress has also been observed in dried nickel
hydroxide films, where the shifting of lattice vibrational modes indicates that water removal
alters the material's density and induces internal stresses. Furthermore, mechanical stress
occurs during the redox cycling of nickel hydroxide electrodes in batteries due to the density
differences between nickel hydroxide and nickel oxyhydroxide [21, 25-27].

a-Derivative structures of nickel hydroxide (a«-Ni(OH),) are modified versions of the original
a-phase. They are characterized by the incorporation of various guest species, such as
surfactants or anions, into the interlayer spaces of the nickel hydroxide lattice. While these
derivatives maintain the fundamental structure of a-Ni(OH),, they exhibit altered physical and
chemical properties as a result of the presence of these intercalated species [10].

One common type of a-derivative structure involves surfactant-intercalated o-Ni(OH),,
where surfactant molecules replace interlayer water. This modification results in a
hydrophobic interlayer space, which can influence the material's electrochemical behavior and
stability [45]. Surfactants such as cetyltrimethylammonium bromide and dodecyl sulfate have
been used to create these structures, enhancing their applicability in various fields, including
catalysis and energy storage [45-47].
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Another important aspect of a-derivative structures is their potential for enhanced
performance in electrochemical applications [48]. The incorporation of different anions or
surfactants can improve the conductivity and electrochemical activity of the material, making
them suitable for use in batteries, supercapacitors, and sensors[49, 50]. Moreover, the
structural diversity of a-derivative nickel hydroxides allows for the tuning of their properties,
such as morphology, porosity, and surface area, which are critical for optimizing their
performance in specific applications. Overall, a-derivative structures represent a significant
advancement in the study of nickel hydroxides, offering new avenues for research and
development in materials science and electrochemistry [34, 46, 51].

Exfoliated a-derivatives of nickel hydroxide (a-Ni(OH),) represent a unique class of
materials derived from the parent a-phase through the separation of its layered structure into
individual sheets. This process, known as exfoliation, significantly alters the properties of the
material, making it distinct from both a-Ni(OH), and 3-Ni(OH), [9, 52].

The exfoliation of a-Ni(OH), can be achieved through two primary methods. The first
involves intercalating surfactants into the interlayer space, rendering the material
organophilic. When an organic solvent is introduced, such as formamide or 1-butanol, the
surfactant-stabilized layers can be spontaneously exfoliated, resulting in a colloidal suspension
of individual nickel hydroxide sheets [18, 52, 53]. This method enhances the material's surface
area and reactivity, making it suitable for various applications, including catalysis and energy
storage. The second method utilizes amphoteric molecules, which possess both acidic and basic
functional groups. For example, p-aminobenzoic acid can be intercalated into the a-derivative
structure. When the pH of the solution is altered, the molecule transitions to a zwitterionic form,
leading to Coulombic repulsion between adjacent layers and driving the exfoliation process [7].

Exfoliated a-derivatives exhibit unique properties, such as increased electrical conductivity
and enhanced electrochemical performance, making them promising candidates for use in
batteries, supercapacitors, and other advanced materials applications. Their ability to maintain
structural integrity while providing high surface area and reactivity positions exfoliated a-
derivatives as valuable materials in the fields of nanotechnology and energy storage.

Conclusion

Nickel hydroxides, particularly in their a-derivative and exfoliated forms, represent a
significant area of research due to their versatile properties and wide-ranging applications. The
structural modifications achieved through intercalation and exfoliation not only enhance the
material's electrochemical performance but also expand its potential uses in energy storage,
catalysis, and advanced materials development. The ability to tailor the properties of these
derivatives by incorporating various guest species allows for the optimization of their
functionality in specific applications. As research continues to explore the synthesis and
characterization of nickel hydroxides and their derivatives, the insights gained will likely lead
to innovative solutions in technology and materials science. The ongoing advancements in
understanding the synthesis methods, structural characteristics, and properties of these
materials underscore their importance in addressing contemporary challenges in energy
efficiency and sustainable technologies. Overall, the study of nickel hydroxides, particularly the
a-derivatives and their exfoliated forms, holds great promise for future developments in
various scientific and industrial fields.
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M. basian
Byxapecm mexHUKa/1blK yHUBEpCUMEMIHIH XUMUS JcaHe mamepuaamaHy kagedpacsl, Byxapecm,
PymbiHus

Hukenb ruApOKCUAIHAETI XKETiCTIKTep: KYpPbLJIBIMAAD »K9HE 3aMaHayHU KoJ1aH6aap (moJuy)

Anpgarna. Bys mosty MakKaJsiacblHZIa COHFBI GipHellle OHXXbUIABIKTAa HUKEJIb TUAPOKCU/II OOUBIHIIA
JKYPTi3iJireH 3epTTeyJepre IOy Kacaiaabl, 0y uU3UKaJa Aa, XUMUAAA a MaHbI3Abl HHXXEHEPJIIK
KoJI/JaHbasibl, acipece GaTapesisiap/la MaHbI3/bl MaTepuad. On eki Gesrisi monauMopdTap/blH, o-
Ni(OH). xanHe B-Ni(OH). KypbLIBIMAApbIH cUllaTTayAaH 6OacTanajbl. Makasaja COHbIMEH KaTap
HUKeJIb THAPOKCUAIH/IE XK1 Ke3/IeCeTiH rupaTalius, KabaTTacy aKayJapbl, MEXaHUKaJ/IbIK KepHeyJiep
’KOHEe HOHJBIK KOCHaJapAblH KOCBLIYbl CHAKTBI JpTYpJi Oy3bLIysap 3epTTesefli. balsaHbICThI
MaTepua/Zap, COHbIH, illiHJe MHTePKaJUpJIEHTEH O-TYbIHAbLIApPbl MeH HeTi3ri HUKeJb Ty3Japhbl Ja
TaJKbIaHaAbl. oy HUKeJb TUAPOKCUAIH CUHTE3JEy/iH XUMHUAJIBIK K9HE 3JIeKTPOXUMUSJIBIK
TYH/ZbIPY, 30J1b-T€JIb CHHTE3i, XUMHUAJBIK, KapTalo, THAPOTEPMUSJIBIK )KoHE COJIBOTEPMUAJBIK, CUHTE3,
3JIEKTPOXUMHUSAJIBIK TOTBIFY, MUKPOTOJIKbIH KOMEriMeH CHUHTe3/ley 9He COHOXUMHUSJBIK 3JicTep
CUSKTBI OipHelle djicTepiH >XMHaKTaiAbl. COHbIH[A HUKeJNb TUAPOKCHJIHIH 6esrini ¢usrkKaibiK
KacheTTepi - MAarHUTTIK, JAIpUIJIK, ONTHUKAJIBIK, 3JIEKTPJIK X9HE MeXaHUKaJIbIK - 3epTTeJeJi.
KopbITBIHABI 66J1iM 0ChI MaTepHaIJapAbIH 2JIeYeTTi KYH/Ibl KACHEeTTePiHiH KbICKallla Ma3MYHBIH KoHe
HUKeJIb TUAPOKCU/I HerisiHaeri 6erici3 yarinepai aHbIKTay K9He CUNIaTTay 9/iCTepiH YChIHA/IBL.

Ty#iH ce3jep: HUKeJNb TUAPOKCU/I, aKKyMYJSTOPJbIK TEXHOJOTUsIApP, 3JeKTpOKaTalus,
doToKaTasn3, HAHOKYPBLIBIMJIAP, CYINEPKOHJAEHCATOpJap, 3JIEKTPOXUMHSJIBIK  JaTUYUKTED,
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KYPBbUIBIMBIK 6Y3bLTyJIap, CHHTE3 9AicTepi, MUKPOTOJKbIH/bBI CHHTE3, COHOXUMHUS, 3JIEKTPOXPOM/IBIK,
KYpBbLIFbLIAP.

M. Basian
Kagbedpa xumuu u mamepuasosederus,, TexnHuueckuti yHueepcumem Byxapecma, Byxapecm, PymbiHusi

JocTkeHUs B 06/1aCTH THAPOKCHA HUKEJIS: CTPYKTYPbl 1 COBpEMEHHbIE TPUMEHEHHU S
(0630p)

AHHOTauusa: B 3Toil 0630pHON cTaThbe MNpejCTaBJieH 0630p HcCCAe[J0BaHUM, MPOBEJEHHbIX 3a
MocJe/JHUE HECKOJIBLKO IECATUIETUH M0 TUIPOKCU/TY HUKeJIS, BAXKHEHIIIeMy MaTepuasly Kak B puU3uKe,
TaKk U B XUMHU C 3aMETHbBIMH HWH)XEHEpPHBbIMH NPUJIOXKEHHUSIMH, 0COGEHHO B akKymyJssaTopax. OnHa
HAYHMHAETCs C ONMMCAHUSA CTPYKTYP ABYX M3BeCTHBIX mosiuMopdos, a-Ni(OH), u B-Ni(OH).. B cratbe
TaK)Xe PacCMaTPUBAIOTCH pasJIMuHble THUIbI Gecrnopsika, OObIYHO BCTpedaloniuecs B THAPOKCUJIE
HUKeJIsI, TAaKue KaK TrujpaTtanus, AedeKTbl YIAaKOBKH, MexXaHW4YeCKHe HaNpsKeHUs U BKJIOYeHHue
HMOHHBIX puMeced. Takke 06Cy>K/1al0TCs CBSI3aHHbIe MaTePHaJIbl, BKJIKOYasi HHTEPKaJIUPOBaHHbIE O-
MPOU3BO/IHbIE U OCHOBHbIE COJIM HUKeJA. [lanee B 0630pe 060611aI0TCI HECKOJIBKO METO/I0B CHHTEe3a
TUJIPOKCU/IA HUKEJISl, TAKUX KaK XMMHYECKOe U 3JIEKTPOXUMHUYECKOE OCAXKEHUE, 30/Ib-TeJIb CUHTES,
XUMHUYECKOEe CTapeHHe, TUAPOTEPMATbHBIA U COJbBOTEPMAJIbHBIA CHHTE3, 3JEKTPOXUMHYECKOE
OKHUCJIEHWE, CHHTe3 C MWCIOJIb30BAHMEM MHUKPOBOJH M COHOXMMHYECKHME MeToJbl. HakoHer,
paccMaTpUBAlOTCAd U3BEeCTHble (QU3UYECKHE CBOWCTBA THJPOKCHJA HHUKeJNs — MarHUTHbIE,
BUOpAllMOHHbIE, ONTHUYECKHE, 3JIEKTPUYECKHe U MeXaHUYecKue. B 3ak/IOUMTeNbHOM pa3zjesie
MpEe/ICTABJIEHO KPAaTKOe U3JI0’KeHHEe MOTEeHIMaJbHO LIEHHbIX CBONUCTB 3TUX MAaTEPUAJIOB U METO/IOB
HeHTUUKAMU U XapaKTEPUCTHUKH HEN3BECTHBIX 06Pa310B HA OCHOBE I'H/IPOKCH/A HUKEIS.

KniwouyeBble cioBa: T'wapokcuj HUKessd, AKKyMyJSTOpPHble TEXHOJIOTHUH, IJJIEKTPOKATAaJU3,
®orokaTanus, HaHocTpyKTyphbl, CynepKOHIeHCATOPbI, JJeKTPOXUMHUYECKHEe NaTYUKU, CTPYKTYpHbIN
6ecniopsi0K, MeTozbl cuHTe3a, CHHTE3 C MCII0JIb30BAHUEM MHUKPOBOJIHOBOTO U3/y4eHusi, COHOXUMHUS,
JJIeKTPOXPOMHbBIE YCTPOUCTBA.
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